Computing Functions of Random Variables via Reproducing Kernel Hilbert Space Representations

B. Schölkopf, K. Muandet, K. Fukumizu, S. Harmeling, Jonas Martin Peters

17 Citationer (Scopus)

Abstract

We describe a method to perform functional operations on probability distributions of random variables. The method uses reproducing kernel Hilbert space representations of probability distributions, and it is applicable to all operations which can be applied to points drawn from the respective distributions. We refer to our approach as kernel probabilistic programming. We illustrate it on synthetic data and show how it can be used for nonparametric structural equation models, with an application to causal inference.

OriginalsprogEngelsk
TidsskriftStatistics and Computing
Vol/bind25
Udgave nummer4
Sider (fra-til)755-766
Antal sider12
ISSN0960-3174
DOI
StatusUdgivet - 26 jul. 2015
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Computing Functions of Random Variables via Reproducing Kernel Hilbert Space Representations'. Sammen danner de et unikt fingeraftryk.

Citationsformater