Commutator inequalities via Schur products

1 Citationer (Scopus)

Abstract

For a self-adjoint unbounded operator D on a Hilbert space H; a bounded operator y on H and some Borel functions g(t) we establish inequalities of the type∥[g(D), y] ∥ ≤ A0∥y∥+1∥[D, y] ∥+A2∥[D, [D, y]] ∥++An∥[D, [D,. [D, y].]] ∥ ∥. The proofs take place in a space of infinite matrices with operator entries, and in this setting it is possible to approximate the matrix associated to [g(D), y] by the Schur product of a matrix approximating [D, y] and a scalar matrix. A classical inequality on the norm of Schur products may then be applied to obtain the results.

OriginalsprogEngelsk
TitelOperator Algebras and Applications : The Abel Symposium 2015
RedaktørerToke M. Carlsen, Nadia S. Larsen, Sergey Neshveyev, Christian Skau
ForlagSpringer
Publikationsdato2016
Sider127-143
ISBN (Trykt)978-3-319-39284-4
ISBN (Elektronisk)978-3-319-39286-8
DOI
StatusUdgivet - 2016
BegivenhedAbel Symposium 2015 - Bergen/Harstad, Norge
Varighed: 7 aug. 201611 aug. 2016

Konference

KonferenceAbel Symposium 2015
Land/OmrådeNorge
ByBergen/Harstad
Periode07/08/201611/08/2016
NavnAbel Symposia
Vol/bind12

Fingeraftryk

Dyk ned i forskningsemnerne om 'Commutator inequalities via Schur products'. Sammen danner de et unikt fingeraftryk.

Citationsformater