Abstract
We consider the problem of coloring a 3-colorable graph in polynomial time using as few colors as possible. We present a combinatorial algorithm getting down to Õ(n4/11) colors. This is the first combinatorial improvement of Blum's Õ(n3/8) bound from FOCS'90. Like Blum's algorithm, our new algorithm composes nicely with recent semi-definite programming approaches. The current best bound is O(n0.2072) colors by Chlamtac from FOCS'07. We now bring it down to O(n0.2049) colors.
Originalsprog | Engelsk |
---|---|
Titel | 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science |
Antal sider | 8 |
Forlag | IEEE |
Publikationsdato | 2012 |
Sider | 68-75 |
ISBN (Trykt) | 978-1-4673-4383-1 |
DOI | |
Status | Udgivet - 2012 |
Begivenhed | IEEE 53rd Annual Symposium on Foundations of Computer Science - New Brunswick, New Jersey, USA Varighed: 20 okt. 2012 → 23 okt. 2012 Konferencens nummer: 53 |
Konference
Konference | IEEE 53rd Annual Symposium on Foundations of Computer Science |
---|---|
Nummer | 53 |
Land/Område | USA |
By | New Brunswick, New Jersey |
Periode | 20/10/2012 → 23/10/2012 |
Emneord
- computational complexity
- graph colouring
- mathematical programming
- 3-colorable graph
- Õ(n0.2072) colors
- Õ(n0. 2049) colors
- Õ(n4/11) colors
- combinatorial coloring algorithm
- polynomial time
- semi-definite programming approaches
- Algorithm design and analysis
- Approximation algorithms
- Approximation methods
- Color
- Computer science
- Electronic mail
- Polynomials
- Approximation Algorithms
- Graph Coloring