Combinatorial coloring of 3-colorable graphs

Ken-ichi Kawarabayashi, Mikkel Thorup

14 Citationer (Scopus)

Abstract

We consider the problem of coloring a 3-colorable graph in polynomial time using as few colors as possible. We present a combinatorial algorithm getting down to Õ(n4/11) colors. This is the first combinatorial improvement of Blum's Õ(n3/8) bound from FOCS'90. Like Blum's algorithm, our new algorithm composes nicely with recent semi-definite programming approaches. The current best bound is O(n0.2072) colors by Chlamtac from FOCS'07. We now bring it down to O(n0.2049) colors.

OriginalsprogEngelsk
Titel2012 IEEE 53rd Annual Symposium on Foundations of Computer Science
Antal sider8
ForlagIEEE
Publikationsdato2012
Sider68-75
ISBN (Trykt)978-1-4673-4383-1
DOI
StatusUdgivet - 2012
BegivenhedIEEE 53rd Annual Symposium on Foundations of Computer Science - New Brunswick, New Jersey, USA
Varighed: 20 okt. 201223 okt. 2012
Konferencens nummer: 53

Konference

KonferenceIEEE 53rd Annual Symposium on Foundations of Computer Science
Nummer53
Land/OmrådeUSA
ByNew Brunswick, New Jersey
Periode20/10/201223/10/2012

Emneord

  • computational complexity
  • graph colouring
  • mathematical programming
  • 3-colorable graph
  • Õ(n0.2072) colors
  • Õ(n0. 2049) colors
  • Õ(n4/11) colors
  • combinatorial coloring algorithm
  • polynomial time
  • semi-definite programming approaches
  • Algorithm design and analysis
  • Approximation algorithms
  • Approximation methods
  • Color
  • Computer science
  • Electronic mail
  • Polynomials
  • Approximation Algorithms
  • Graph Coloring

Fingeraftryk

Dyk ned i forskningsemnerne om 'Combinatorial coloring of 3-colorable graphs'. Sammen danner de et unikt fingeraftryk.

Citationsformater