Colorful Simplicial Depth, Minkowski Sums, and Generalized Gale Transforms

Karim A. Adiprasito, Philip Brinkmann, Arnau Padrol, Pavel Patak, Zuzana Patakova, Raman Sanyal

Abstract

The colorful simplicial depth of a collection of d + 1 finite sets of points in Euclidean d-space is the number of choices of a point from each set such that the origin is contained in their convex hull. We use methods from combinatorial topology to prove a tight upper bound on the colorful simplicial depth. This implies a conjecture of Deza et al. [7]. Furthermore, we introduce colorful Gale transforms as a bridge between colorful configurations and Minkowski sums. Our colorful upper bound then yields a tight upper bound on the number of totally mixed facets of certain Minkowski sums of simplices. This resolves a conjecture of Burton [6] in the theory of normal surfaces.

OriginalsprogEngelsk
TidsskriftInternational Mathematics Research Notices
Vol/bind2019
Udgave nummer6
Sider (fra-til)1894-1919
ISSN1073-7928
DOI
StatusUdgivet - 22 mar. 2019

Fingeraftryk

Dyk ned i forskningsemnerne om 'Colorful Simplicial Depth, Minkowski Sums, and Generalized Gale Transforms'. Sammen danner de et unikt fingeraftryk.

Citationsformater