Classification of barley U-box E3 ligases and their expression patterns in response to drought and pathogen stresses

Moon Young Ryu, Seok Keun Cho, Yourae Hong, Jinho Kim, Jong Hum Kim, Gu Min Kim, Yan-Jun Chen, Eva Knoch, Birger Lindberg Møller, Woo Taek Kim, Michael Foged Lyngkjær, Seong Wook Yang*

*Corresponding author af dette arbejde
9 Citationer (Scopus)
21 Downloads (Pure)

Abstract

Background: Controlled turnover of proteins as mediated by the ubiquitin proteasome system (UPS) is an important element in plant defense against environmental and pathogen stresses. E3 ligases play a central role in subjecting proteins to hydrolysis by the UPS. Recently, it has been demonstrated that a specific class of E3 ligases termed the U-box ligases are directly associated with the defense mechanisms against abiotic and biotic stresses in several plants. However, no studies on U-box E3 ligases have been performed in one of the important staple crops, barley. Results: In this study, we identified 67 putative U-box E3 ligases from the barley genome and expressed sequence tags (ESTs). Similar to Arabidopsis and rice U-box E3 ligases, most of barley U-box E3 ligases possess evolutionary well-conserved domain organizations. Based on the domain compositions and arrangements, the barley U-box proteins were classified into eight different classes. Along with this new classification, we refined the previously reported classifications of U-box E3 ligase genes in Arabidopsis and rice. Furthermore, we investigated the expression profile of 67 U-box E3 ligase genes in response to drought stress and pathogen infection. We observed that many U-box E3 ligase genes were specifically up-and-down regulated by drought stress or by fungal infection, implying their possible roles of some U-box E3 ligase genes in the stress responses. Conclusion: This study reports the classification of U-box E3 ligases in barley and their expression profiles against drought stress and pathogen infection. Therefore, the classification and expression profiling of barley U-box genes can be used as a platform to functionally define the stress-related E3 ligases in barley.

OriginalsprogEngelsk
Artikelnummer326
TidsskriftBMC Genomics
Vol/bind20
Sider (fra-til)1-15
ISSN1471-2164
DOI
StatusUdgivet - 29 apr. 2019

Fingeraftryk

Dyk ned i forskningsemnerne om 'Classification of barley U-box E3 ligases and their expression patterns in response to drought and pathogen stresses'. Sammen danner de et unikt fingeraftryk.

Citationsformater