Chronic alcohol exposure disrupts CB1 regulation of GABAergic transmission in the rat basolateral amygdala

Florence P. Varodayan, Michal Bajo, Neeraj Soni, George Luu, Samuel G. Madamba, Paul Schweitzer, Marisa Roberto*

*Corresponding author af dette arbejde
    14 Citationer (Scopus)

    Abstract

    The basolateral nucleus of the amygdala (BLA) is critical to the pathophysiology of anxiety-driven alcohol drinking and relapse. The endogenous cannabinoid/type 1 cannabinoid receptor (eCB/CB1) system curbs BLA-driven anxiety and stress responses via a retrograde negative feedback system that inhibits neurotransmitter release, and BLA CB1 activation reduces GABA release and drives anxiogenesis. Additionally, decreased amygdala CB1 is observed in abstinent alcoholic patients and ethanol withdrawn rats. Here, we investigated the potential disruption of eCB/CB1 signaling on GABAergic transmission in BLA pyramidal neurons of rats exposed to 2–3 weeks intermittent ethanol. In the naïve rat BLA, the CB1 agonist WIN 55,212-2 (WIN) decreased GABA release, and this effect was prevented by the CB1 antagonist AM251. AM251 alone increased GABA release via a mechanism requiring postsynaptic calcium-dependent activity. This retrograde tonic eCB/CB1 signaling was diminished in chronic ethanol exposed rats, suggesting a functional impairment of the eCB/CB1 system. In contrast, acute ethanol increased GABAergic transmission similarly in naïve and chronic ethanol exposed rats, via both presynaptic and postsynaptic mechanisms. Notably, CB1 activation impaired ethanol's facilitation of GABAergic transmission across both groups, but the AM251-induced and ethanol-induced facilitation of GABA release was additive, suggesting independent presynaptic sites of action. Collectively, the present findings highlight a critical CB1 influence on BLA GABAergic transmission that is dysregulated by chronic ethanol exposure and, thus, may contribute to the alcohol-dependent state.

    OriginalsprogEngelsk
    TidsskriftAddiction Biology
    Vol/bind22
    Udgave nummer3
    Sider (fra-til)766-778
    Antal sider13
    ISSN1355-6215
    DOI
    StatusUdgivet - maj 2017

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'Chronic alcohol exposure disrupts CB1 regulation of GABAergic transmission in the rat basolateral amygdala'. Sammen danner de et unikt fingeraftryk.

    Citationsformater