@article{c3aecac0533411dd8d9f000ea68e967b,
title = "Characterization of E2F8, a novel E2F-like cell-cycle regulated repressor of E2F-activated transcription.",
abstract = "The E2F family of transcription factors are downstream effectors of the retinoblastoma protein, pRB, pathway and are essential for the timely regulation of genes necessary for cell-cycle progression. Here we describe the characterization of human and murine E2F8, a new member of the E2F family. Sequence analysis of E2F8 predicts the presence of two distinct E2F-related DNA binding domains suggesting that E2F8 and, the recently, identified E2F7 form a subgroup within the E2F family. We show that E2F transcription factors bind the E2F8 promoter in vivo and that expression of E2F8 is being induced at the G1/S transition. Purified recombinant E2F8 binds specifically to a consensus E2F-DNA-binding site indicating that E2F8, like E2F7, binds DNA without the requirement of co-factors such as DP1. E2F8 inhibits E2F-driven promoters suggesting that E2F8 is transcriptional repressor like E2F7. Ectopic expression of E2F8 in diploid human fibroblasts reduces expression of E2F-target genes and inhibits cell growth consistent with a role for repressing E2F transcriptional activity. Taken together, these data suggest that E2F8 has an important role in turning of the expression of E2F-target genes in the S-phase of the cell cycle.",
author = "Jesper Christensen and Paul Cloos and Ulla Toftegaard and David Klinkenberg and Bracken, {Adrian P} and Emmanuelle Trinh and Mel Heeran and {Di Stefano}, Luisa and Kristian Helin",
note = "Keywords: Amino Acid Sequence; Animals; Base Sequence; Binding Sites; Cell Cycle; Cell Cycle Proteins; Cell Line; Cell Proliferation; Cloning, Molecular; Consensus Sequence; DNA-Binding Proteins; E2F Transcription Factors; E2F7 Transcription Factor; Gene Expression Regulation; Humans; Mice; Molecular Sequence Data; Repressor Proteins; Trans-Activation (Genetics); Transcription Factors",
year = "2005",
doi = "10.1093/nar/gki855",
language = "English",
volume = "33",
pages = "5458--70",
journal = "Nucleic Acids Research",
issn = "0305-1048",
publisher = "Oxford University Press",
number = "17",
}