TY - JOUR
T1 - C-peptide increases Na,K-ATPase expression via PKC- and MAP kinase-dependent activation of transcription factor ZEB in human renal tubular cells
AU - Galuska, Dana
AU - Pirkmajer, Sergej
AU - Barres, Romain
AU - Ekberg, Karin
AU - Wahren, John
AU - Chibalin, Alexander V
PY - 2011/12/5
Y1 - 2011/12/5
N2 - Background: Replacement of proinsulin C-peptide in type 1 diabetes ameliorates nerve and kidney dysfunction, conditions which are associated with a decrease in Na,K-ATPase activity. We determined the molecular mechanism by which long term exposure to C-peptide stimulates Na,K-ATPase expression and activity in primary human renal tubular cells (HRTC) in control and hyperglycemic conditions. Methodology/Principal Findings: HRTC were cultured from the outer cortex obtained from patients undergoing elective nephrectomy. Ouabain-sensitive rubidium (86Rb+) uptake and Na,K-ATPase activity were determined. Abundance of Na,K-ATPase was determined by Western blotting in intact cells or isolated basolateral membranes (BLM). DNA binding activity was determined by electrical mobility shift assay (EMSA). Culturing of HRTCs for 5 days with 1 nM, but not 10 nM of human C-peptide leads to increase in Na,K-ATPase α1-subunit protein expression, accompanied with increase in 86Rb+ uptake, both in normal- and hyperglycemic conditions. Na,K-ATPase α1-subunit expression and Na,K-ATPase activity were reduced in BLM isolated from cells cultured in presence of high glucose. Exposure to1 nM, but not 10 nM of C-peptide increased PKCε phosphorylation as well as phosphorylation and abundance of nuclear ERK1/2 regardless of glucose concentration. Exposure to 1 nM of C-peptide increased DNA binding activity of transcription factor ZEB (AREB6), concomitant with Na,K-ATPase α1-subunit mRNA expression. Effects of 1 nM C-peptide on Na,K-ATPase α1-subunit expression and/or ZEB DNA binding activity in HRTC were abolished by incubation with PKC or MEK1/2 inhibitors and ZEB siRNA silencing. Conclusions/Significance: Despite activation of ERK1/2 and PKC by hyperglycemia, a distinct pool of PKCs and ERK1/2 is involved in regulation of Na,K-ATPase expression and activity by C-peptide. Most likely C-peptide stimulates sodium pump expression via activation of ZEB, a transcription factor that has not been previously implicated in C-peptide-mediated signaling. Importantly, only physiological concentrations of C-peptide elicit this effect.
AB - Background: Replacement of proinsulin C-peptide in type 1 diabetes ameliorates nerve and kidney dysfunction, conditions which are associated with a decrease in Na,K-ATPase activity. We determined the molecular mechanism by which long term exposure to C-peptide stimulates Na,K-ATPase expression and activity in primary human renal tubular cells (HRTC) in control and hyperglycemic conditions. Methodology/Principal Findings: HRTC were cultured from the outer cortex obtained from patients undergoing elective nephrectomy. Ouabain-sensitive rubidium (86Rb+) uptake and Na,K-ATPase activity were determined. Abundance of Na,K-ATPase was determined by Western blotting in intact cells or isolated basolateral membranes (BLM). DNA binding activity was determined by electrical mobility shift assay (EMSA). Culturing of HRTCs for 5 days with 1 nM, but not 10 nM of human C-peptide leads to increase in Na,K-ATPase α1-subunit protein expression, accompanied with increase in 86Rb+ uptake, both in normal- and hyperglycemic conditions. Na,K-ATPase α1-subunit expression and Na,K-ATPase activity were reduced in BLM isolated from cells cultured in presence of high glucose. Exposure to1 nM, but not 10 nM of C-peptide increased PKCε phosphorylation as well as phosphorylation and abundance of nuclear ERK1/2 regardless of glucose concentration. Exposure to 1 nM of C-peptide increased DNA binding activity of transcription factor ZEB (AREB6), concomitant with Na,K-ATPase α1-subunit mRNA expression. Effects of 1 nM C-peptide on Na,K-ATPase α1-subunit expression and/or ZEB DNA binding activity in HRTC were abolished by incubation with PKC or MEK1/2 inhibitors and ZEB siRNA silencing. Conclusions/Significance: Despite activation of ERK1/2 and PKC by hyperglycemia, a distinct pool of PKCs and ERK1/2 is involved in regulation of Na,K-ATPase expression and activity by C-peptide. Most likely C-peptide stimulates sodium pump expression via activation of ZEB, a transcription factor that has not been previously implicated in C-peptide-mediated signaling. Importantly, only physiological concentrations of C-peptide elicit this effect.
KW - C-Peptide
KW - Cell Nucleus
KW - Extracellular Signal-Regulated MAP Kinases
KW - Gene Expression Regulation, Enzymologic
KW - Gene Silencing
KW - Homeodomain Proteins
KW - Humans
KW - Hyperglycemia
KW - Kidney Tubules
KW - MAP Kinase Signaling System
KW - Models, Biological
KW - Ouabain
KW - Peptides
KW - Phosphorylation
KW - Protein Isoforms
KW - Protein Kinase C
KW - Protein Kinase C-alpha
KW - Protein Kinase C-delta
KW - Protein Kinase C-epsilon
KW - Signal Transduction
KW - Sodium
KW - Sodium-Potassium-Exchanging ATPase
KW - Transcription Factors
U2 - 10.1371/journal.pone.0028294
DO - 10.1371/journal.pone.0028294
M3 - Journal article
C2 - 22162761
SN - 1932-6203
VL - 6
SP - e28294
JO - P L o S One
JF - P L o S One
IS - 12
ER -