Bridge simulation and metric estimation on landmark manifolds

Stefan Horst Sommer, Alexis Arnaudon, Line Kühnel, Sarang Joshi

10 Citationer (Scopus)

Abstract

We present an inference algorithm and connected Monte Carlo based estimation procedures for metric estimation from landmark configurations distributed according to the transition distribution of a Riemannian Brownian motion arising from the Large Deformation Diffeomorphic Metric Mapping (LDDMM) metric. The distribution possesses properties similar to the regular Euclidean normal distribution but its transition density is governed by a high-dimensional PDE with no closed-form solution in the nonlinear case. We show how the density can be numerically approximated by Monte Carlo sampling of conditioned Brownian bridges, and we use this to estimate parameters of the LDDMM kernel and thus the metric structure by maximum likelihood.

OriginalsprogEngelsk
TitelGraphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics : First International Workshop, GRAIL 2017, 6th International Workshop, MFCA 2017, and Third International Workshop, MICGen 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 10–14, 2017, Proceedings
RedaktørerJ. Cardoso, T. Arbel, E. Ferrante, X. Pennec, A. Dalca, S. Parisot, N. K. Batmanghelich, A. Sotiras, M. Nielsen, M. R. Sabuncu, T. Fletcher, L. Shen, S. Durrleman, S. Sommer
Antal sider13
ForlagSpringer
Publikationsdato2017
Sider79-91
ISBN (Trykt)978-3-319-67674-6
ISBN (Elektronisk)978-3-319-67675-3
DOI
StatusUdgivet - 2017
Begivenhed6th International Workshop on Mathematical Foundations of Computational Anatomy - Québec City, Canada
Varighed: 10 sep. 201714 sep. 2017
Konferencens nummer: 6

Konference

Konference6th International Workshop on Mathematical Foundations of Computational Anatomy
Nummer6
Land/OmrådeCanada
ByQuébec City
Periode10/09/201714/09/2017
NavnLecture notes in computer science
Vol/bind10551
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Bridge simulation and metric estimation on landmark manifolds'. Sammen danner de et unikt fingeraftryk.

Citationsformater