Breast tissue segmentation and mammographic risk scoring using deep learning

Peter Kersten Petersen, Mads Nielsen, Pengfei Diao, Nico Karssemeijer, Martin Lillholm

34 Citationer (Scopus)

Abstract

Mammographic scoring of density and texture are established methods to relate to the risk of breast cancer. We present a method that learns descriptive features from unlabeled mammograms and, using these learned features as the input to a simple classifier, address the following tasks: i) breast tissue segmentation ii) scoring of percentage mammographic density (PMD), and iii) scoring of mammographic texture (MT). Our results suggest that the learned PMD scores correlate well to manual ones, and that the learned MT scores are more related to future cancer risk than both manual and automatic PMD scores.

OriginalsprogEngelsk
TitelBreast imaging : 12th International Workshop, IWDM 2014, Gifu City, Japan, June 29 – July 2, 2014. Proceedings
RedaktørerHiroshi Fujita, Takeshi Hara, Chisako Muramatsu
Antal sider7
ForlagSpringer Science+Business Media
Publikationsdato2014
Sider88-94
ISBN (Trykt)978-3-319-07886-1
ISBN (Elektronisk)978-3-319-07887-8
DOI
StatusUdgivet - 2014
BegivenhedInternational Workshop, IWDM 2014 - Gifu City, Japan
Varighed: 29 jun. 20142 jul. 2014
Konferencens nummer: 12

Konference

KonferenceInternational Workshop, IWDM 2014
Nummer12
Land/OmrådeJapan
ByGifu City
Periode29/06/201402/07/2014
NavnLecture notes in computer science
Vol/bind8539
ISSN0302-9743

Emneord

  • Unsupervised feature learning
  • deep learning
  • breast cancer
  • mammograms
  • prognosis
  • risk factor
  • segmentation

Fingeraftryk

Dyk ned i forskningsemnerne om 'Breast tissue segmentation and mammographic risk scoring using deep learning'. Sammen danner de et unikt fingeraftryk.

Citationsformater