Brain Segmentation in Rodent MR-Images Using Convolutional Neural Networks

Björn Sigurdsson, Sune Darkner, Stefan Horst Sommer, Kristian Nygaard Mortensen, Simon Sanggaard, Serhii Kostrikov, Maiken Nedergaard

Abstract

This study compares two different methods for the task of brain segmentation in rodent MR-images, a convolutional neural network (CNN) and majority voting of a registration based atlas (RBA) , and how limited training data affect their performance. The CNN was implemented in Tensorflow.

The RBA performs better on average when using a training set with fewer than 20 images but the CNN achieves a higher median dice-score with a training set of 19 images.
OriginalsprogEngelsk
Publikationsdato2018
StatusUdgivet - 2018
BegivenhedJoint Annual Meeting ISMRM-ESMRMB 2018 - Paris, Frankrig
Varighed: 16 jun. 201821 okt. 2018

Konference

KonferenceJoint Annual Meeting ISMRM-ESMRMB 2018
Land/OmrådeFrankrig
ByParis
Periode16/06/201821/10/2018

Fingeraftryk

Dyk ned i forskningsemnerne om 'Brain Segmentation in Rodent MR-Images Using Convolutional Neural Networks'. Sammen danner de et unikt fingeraftryk.

Citationsformater