Abstract
We define the rigidity of a Feynman integral to be the smallest dimension over which it is nonpolylogarithmic. We prove that massless Feynman integrals in four dimensions have a rigidity bounded by 2(L-1) at L loops provided they are in the class that we call marginal: those with (L+1)D/2 propagators in (even) D dimensions. We show that marginal Feynman integrals in D dimensions generically involve Calabi-Yau geometries, and we give examples of finite four-dimensional Feynman integrals in massless φ4 theory that saturate our predicted bound in rigidity at all loop orders.
Originalsprog | Engelsk |
---|---|
Artikelnummer | 031601 |
Tidsskrift | Physical Review Letters |
Vol/bind | 122 |
Udgave nummer | 3 |
Antal sider | 7 |
ISSN | 0031-9007 |
DOI | |
Status | Udgivet - 24 jan. 2019 |