TY - JOUR
T1 - Body fat loss and compensatory mechanisms in response to different doses of aerobic exercise - a randomized controlled trial in overweight sedentary males
AU - Larsen, Mads Rosenkilde
AU - Auerbach, Pernille Landrock
AU - Reichkendler, Michala Holm
AU - Ploug, Thorkil
AU - Stallknecht, Bente Merete
AU - Sjödin, Anders Mikael
PY - 2012/9/15
Y1 - 2012/9/15
N2 - The amount of weight loss induced by exercise is often disappointing. A diet-induced negative energy balance triggers compensatory mechanisms, e.g., lower metabolic rate and increased appetite. However, knowledge about potential compensatory mechanisms triggered by increased aerobic exercise is limited. A randomized controlled trial was performed in healthy, sedentary, moderately overweight young men to examine the effects of increasing doses of aerobic exercise on body composition, accumulated energy balance, and the degree of compensation. Eighteen participants were randomized to a continuous sedentary control group, 21 to a moderate-exercise (MOD; 300 kcal/day), and 22 to a high-exercise (HIGH; 600 kcal/day) group for 13 wk, corresponding to ~30 and 60 min of daily aerobic exercise, respectively. Body weight (MOD: -3.6 kg, P < 0.001; HIGH: -2.7 kg, P = 0.01) and fat mass (MOD: -4.0 kg, P < 0.001 and HIGH: -3.8 kg, P < 0.001) decreased similarly in both exercise groups. Although the exercise-induced energy expenditure in HIGH was twice that of MOD, the resulting accumulated energy balance, calculated from changes in body composition, was not different (MOD: -39.6 Mcal, HIGH: -34.3 Mcal, not significant). Energy balance was 83% more negative than expected in MOD, while it was 20% less negative than expected in HIGH. No statistically significant changes were found in energy intake or nonexercise physical activity that could explain the different compensatory responses associated with 30 vs. 60 min of daily aerobic exercise. In conclusion, a similar body fat loss was obtained regardless of exercise dose. A moderate dose of exercise induced a markedly greater than expected negative energy balance, while a higher dose induced a small but quantifiable degree of compensation.
AB - The amount of weight loss induced by exercise is often disappointing. A diet-induced negative energy balance triggers compensatory mechanisms, e.g., lower metabolic rate and increased appetite. However, knowledge about potential compensatory mechanisms triggered by increased aerobic exercise is limited. A randomized controlled trial was performed in healthy, sedentary, moderately overweight young men to examine the effects of increasing doses of aerobic exercise on body composition, accumulated energy balance, and the degree of compensation. Eighteen participants were randomized to a continuous sedentary control group, 21 to a moderate-exercise (MOD; 300 kcal/day), and 22 to a high-exercise (HIGH; 600 kcal/day) group for 13 wk, corresponding to ~30 and 60 min of daily aerobic exercise, respectively. Body weight (MOD: -3.6 kg, P < 0.001; HIGH: -2.7 kg, P = 0.01) and fat mass (MOD: -4.0 kg, P < 0.001 and HIGH: -3.8 kg, P < 0.001) decreased similarly in both exercise groups. Although the exercise-induced energy expenditure in HIGH was twice that of MOD, the resulting accumulated energy balance, calculated from changes in body composition, was not different (MOD: -39.6 Mcal, HIGH: -34.3 Mcal, not significant). Energy balance was 83% more negative than expected in MOD, while it was 20% less negative than expected in HIGH. No statistically significant changes were found in energy intake or nonexercise physical activity that could explain the different compensatory responses associated with 30 vs. 60 min of daily aerobic exercise. In conclusion, a similar body fat loss was obtained regardless of exercise dose. A moderate dose of exercise induced a markedly greater than expected negative energy balance, while a higher dose induced a small but quantifiable degree of compensation.
U2 - 10.1152/ajpregu.00141.2012
DO - 10.1152/ajpregu.00141.2012
M3 - Journal article
C2 - 22855277
SN - 0363-6119
VL - 303
SP - R571-R579
JO - American Journal of Physiology: Regulatory, Integrative and Comparative Physiology
JF - American Journal of Physiology: Regulatory, Integrative and Comparative Physiology
IS - 6
ER -