Biotic homogenization can decrease landscape-scale forest multifunctionality

Fons van der Plas, Pete Manning, Santiago Soliveres, Eric Allan, Michael Scherer-Lorenzen, Kris Verheyen, Christian Wirth, Miguel A. Zavala, Evy Ampoorter, Lander Baeten, Luc Barbaro, Jürgen Bauhus, Raquel Benavides, Adam Benneter, Damien Bonal, Olivier Bouriaud, Helge Bruelheide, Filippo Bussotti, Monique Carnol, Bastien CastagneyrolYohan Charbonnier, David Anthony Coomes, Andrea Coppi, Cristina C. Bestias, Seid Muhie Dawud, Hans De Wandeler, Timo Domisch, Leena Finér, Arthur Gessler, André Granier, Charlotte Grossiord, Virginie Guyot, Stephan Hättenschwiler, Hervé Jactel, Bogdan Jaroszewicz, François Xavier Joly, Tommaso Jucker, Julia Koricheva, Harriet Milligan, Sandra Mueller, Bart Muys, Diem Nguyen, Martina Pollastrini, Sophia Ratcliffe, Karsten Raulund-Rasmussen, Federico Selvi, Jan Stenlid, Fernando Valladares, Lars Vesterdal, Dawid Zielínski, Markus Fischer, William H. Schlesinger

117 Citationer (Scopus)

Abstract

Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.

OriginalsprogEngelsk
TidsskriftProceedings of the National Academy of Sciences of the United States of America
Vol/bind113
Udgave nummer13
Sider (fra-til)3557-3562
Antal sider6
ISSN0027-8424
DOI
StatusUdgivet - 29 mar. 2016

Fingeraftryk

Dyk ned i forskningsemnerne om 'Biotic homogenization can decrease landscape-scale forest multifunctionality'. Sammen danner de et unikt fingeraftryk.

Citationsformater