Bayesian epipolar geometry estimation from tomographic projections

Sami Sebastian Brandt, Katrine Hommelhoff Jensen, Francois Bernard Lauze

Abstract

In this paper, we first show that the affine epipolar geometry can be estimated by identifying the common 1D projection from a pair of tomographic parallel projection images and the 1D affine transform between the common 1D projections. To our knowledge, the link between the common 1D projections and the affine epipolar geometry has been unknown previously; and in contrast to the traditional methods of estimating the epipolar geometry, no point correspondences are required. Using these properties, we then propose a Bayesian method for estimating the affine epipolar geometry, where we apply a Gaussian model for the noise and non-informative priors for the nuisance parameters. We derive an analytic form for the marginal posterior distribution, where the nuisance parameters are integrated out. The marginal posterior is sampled by a hybrid Gibbs-Metropolis-Hastings sampler and the conditional mean and the covariance over the posterior are evaluated on the homogeneous manifold of affine fundamental matrices. We obtained promising results with synthetic 3D Shepp-Logan phantom as well as with real cryo-electron microscope projections.

OriginalsprogEngelsk
TitelComputer Vision – ACCV 2012 : 11th Asian Conference on Computer Vision, Daejeon, Korea, November 5-9, 2012, Revised Selected Papers, Part IV
RedaktørerKyoung Mu Lee, Yasuyuki Matsushita, James M. Rehg, Zhanyi Hu
Antal sider12
ForlagSpringer
Publikationsdato2013
Sider231-242
ISBN (Trykt)978-3-642-37446-3
ISBN (Elektronisk)978-3-642-37447-0
DOI
StatusUdgivet - 2013
BegivenhedThe 11th Asian Conference on Computer Vision - Daejeon, Sydkorea
Varighed: 5 nov. 20129 nov. 2012
Konferencens nummer: 11

Konference

KonferenceThe 11th Asian Conference on Computer Vision
Nummer11
Land/OmrådeSydkorea
ByDaejeon
Periode05/11/201209/11/2012
NavnLecture notes in computer science
Vol/bind7727
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Bayesian epipolar geometry estimation from tomographic projections'. Sammen danner de et unikt fingeraftryk.

Citationsformater