Batch steepest-descent-mildest-ascent for interactive maximum margin clustering

Fabian Gieseke, Tapio Pahikkala, Tom Heskes

1 Citationer (Scopus)

Abstract

The maximum margin clustering principle extends support vector machines to unsupervised scenarios. We present a variant of this clustering scheme that can be used in the context of interactive clustering scenarios. In particular, our approach permits the class ratios to be manually defined by the user during the fitting process. Our framework can be used at early stages of the data mining process when no or very little information is given about the true clusters and class ratios. One of the key contributions is an adapted steepest-descent-mildest-ascent optimization scheme that can be used to fine-tune maximum margin clustering solutions in an interactive manner. We demonstrate the applicability of our approach in the context of remote sensing and astronomy with training sets consisting of hundreds of thousands of patterns.

OriginalsprogEngelsk
TitelAdvances in Intelligent Data Analysis XIV : 14th International Symposium, IDA 2015, Saint Etienne. France, October 22 -24, 2015. Proceedings
RedaktørerElisa Fromont, Tijl De Bie, Matthijs van Leeuwen
Antal sider13
ForlagSpringer
Publikationsdato2015
Sider95-107
ISBN (Trykt)978-3-319-24464-8
ISBN (Elektronisk)978-3-319-24465-5
DOI
StatusUdgivet - 2015
Udgivet eksterntJa
Begivenhed14th International Symposium on Advances in Intelligent Data Analysis - Saint Etienne, Frankrig
Varighed: 22 okt. 201524 okt. 2015
Konferencens nummer: 14

Konference

Konference14th International Symposium on Advances in Intelligent Data Analysis
Nummer14
Land/OmrådeFrankrig
BySaint Etienne
Periode22/10/201524/10/2015
NavnLecture notes in computer science
Vol/bind9385
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Batch steepest-descent-mildest-ascent for interactive maximum margin clustering'. Sammen danner de et unikt fingeraftryk.

Citationsformater