Abstract
Nitrogen-fixing microorganisms (diazotrophs) provide biologically available nitrogen to plankton communities and thereby greatly influence the productivity in many marine regions. Various cyanobacterial groups have traditionally been considered the major oceanic diazotrophs, but later noncyanobacterial and presumably heterotrophic diazotrophs were also found to be widespread and potentially important in nitrogen fixation. However, the distribution and activity of different diazotroph groups is still poorly constrained for most oceanic ecosystems. Here we examined diazotroph community structure and activity along a 7500 km south-north transect between the central equatorial Pacific and the Bering Sea. Nitrogen fixation contributed up to 84% of new production in the upper waters of the subtropical gyre, where the diazotroph community included the gammaproteobacterium γ-24774A11 and highly active cyanobacterial phylotypes (>50% of total nifH transcript abundance). Nitrogen fixation was sometimes detectable down to 150 m depth and extended horizontally to the edge of the gyre at around 35°N. Nitrogen fixation was even detected far north on the Bering Sea shelf. In the Alaskan Coastal Waters on the Bering Sea shelf, low nitrate together with high dissolved iron concentrations seemed to foster diazotroph growth, including a prominent role of UCYN-A2, which was abundant near the surface (1.2×105 nifH gene copies L−1). Our study provides evidence for nitrogen fixation in the Bering Sea and suggests a clear contrast in the composition of diazotrophs between the tropical/subtropical gyre and the separate waters in the cold northern regions of the North Pacific.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Global Biogeochemical Cycles |
Vol/bind | 31 |
Udgave nummer | 6 |
Sider (fra-til) | 996-1009 |
Antal sider | 14 |
ISSN | 0886-6236 |
DOI | |
Status | Udgivet - 1 jun. 2017 |