Barriers for fast matrix multiplication from irreversibility

Matthias Christandl, Péter Vrana, Jeroen Zuiddam

3 Citationer (Scopus)
7 Downloads (Pure)

Abstract

Determining the asymptotic algebraic complexity of matrix multiplication, succinctly represented by the matrix multiplication exponent ω, is a central problem in algebraic complexity theory. The best upper bounds on ω, leading to the state-of-the-art ω ≤ 2.37.., have been obtained via the laser method of Strassen and its generalization by Coppersmith and Winograd. Recent barrier results show limitations for these and related approaches to improve the upper bound on ω. We introduce a new and more general barrier, providing stronger limitations than in previous work. Concretely, we introduce the notion of “irreversibility” of a tensor and we prove (in some precise sense) that any approach that uses an irreversible tensor in an intermediate step (e.g., as a starting tensor in the laser method) cannot give ω = 2. In quantitative terms, we prove that the best upper bound achievable is lower bounded by two times the irreversibility of the intermediate tensor. The quantum functionals and Strassen support functionals give (so far, the best) lower bounds on irreversibility. We provide lower bounds on the irreversibility of key intermediate tensors, including the small and big Coppersmith–Winograd tensors, that improve limitations shown in previous work. Finally, we discuss barriers on the group-theoretic approach in terms of “monomial” irreversibility.

OriginalsprogEngelsk
Titel34th Computational Complexity Conference, CCC 2019
RedaktørerAmir Shpilka
Antal sider17
ForlagSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Publikationsdato2019
Artikelnummer26
ISBN (Elektronisk)9783959771160
DOI
StatusUdgivet - 2019
Begivenhed34th Computational Complexity Conference, CCC 2019 - New Brunswick, USA
Varighed: 18 jul. 201920 jul. 2019

Konference

Konference34th Computational Complexity Conference, CCC 2019
Land/OmrådeUSA
ByNew Brunswick
Periode18/07/201920/07/2019
SponsorMicrosoft Research
NavnLeibniz International Proceedings in Informatics, LIPIcs
Vol/bind137
ISSN1868-8969

Fingeraftryk

Dyk ned i forskningsemnerne om 'Barriers for fast matrix multiplication from irreversibility'. Sammen danner de et unikt fingeraftryk.

Citationsformater