Autoencoding beyond pixels using a learned similarity metric

Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, Ole Winther

183 Citationer (Scopus)

Abstract

We present an autoencoder that leverages learned representations to better measure similarities in data space. By combining a variational autoencoder (VAE) with a generative adversarial network (GAN) we can use learned feature representations in the GAN discriminator as basis for the VAE reconstruction objective. Thereby, we replace element-wise errors with feature-wise errors to better capture the data distribution while offering invariance towards e.g. translation. We apply our method to images of faces and show that it outperforms VAEs with element-wise similarity measures in terms of visual fidelity. Moreover, we show that the method learns an embedding in which high-level abstract visual features (e.g. wearing glasses) can be modified using simple arithmetic.

OriginalsprogEngelsk
TitelProceedings of The 33rd International Conference on Machine Learning
RedaktørerMaria Florina Balcan, Kilian Q. Weinberger
Antal sider9
Publikationsdato2016
Sider1558–1566
ISBN (Elektronisk)978-151082900-8
StatusUdgivet - 2016
Begivenhed33rd International Conference on Machine Learning - New York, USA
Varighed: 19 jun. 201624 jun. 2016
Konferencens nummer: 33

Konference

Konference33rd International Conference on Machine Learning
Nummer33
Land/OmrådeUSA
ByNew York
Periode19/06/201624/06/2016
NavnJMLR: Workshop and Conference Proceedings
Vol/bind48

Fingeraftryk

Dyk ned i forskningsemnerne om 'Autoencoding beyond pixels using a learned similarity metric'. Sammen danner de et unikt fingeraftryk.

Citationsformater