TY - JOUR
T1 - Atmospheric Chemistry of Pentafluorophenol
T2 - Kinetics and Mechanism of the Reactions of Cl Atoms and OH Radicals
AU - Hasager, Freja
AU - Andersen, Simone Thirstrup
AU - Hass, Sofie Askjaer
AU - Sulbaek Andersen, Mads P.
AU - Nielsen, Ole John
PY - 2019/11/27
Y1 - 2019/11/27
N2 - Fourier transform infrared smog chamber techniques were used to study the kinetics and mechanisms of the reactions of Cl atoms and OH radicals with pentafluorophenol (C6F5OH) in 700 Torr total pressure of air or N2 diluent at 296 ± 2 K. Rate constants k(OH + C6F5OH) = (6.88 ± 1.37) × 10-12 cm3 molecule-1 s-1 and k(Cl + C6F5OH) = (2.52 ± 0.31) × 10-11 cm3 s-1 molecule-1 in 700 Torr air diluent were determined. In 700 Torr N2, the rate constant for the reaction of C6F5OH with Cl atoms is linearly dependent on the Cl atom concentration. Product studies on this reaction in both 700 Torr air and 700 Torr N2 diluent show the formation of nonconjugated products. The photolysis constant of C6F5OH was determined by 254 nm UV irradiation of a C6F5OH and CH3CHO mixture in 700 Torr air or N2 at 296 ± 2 K and yielded a photolysis rate constant of J(C6F5OH) = (2.83 ± 0.25) × 10-3 s-1. Results are discussed with respect to the atmospheric chemistry of other halogenated aromatic species.
AB - Fourier transform infrared smog chamber techniques were used to study the kinetics and mechanisms of the reactions of Cl atoms and OH radicals with pentafluorophenol (C6F5OH) in 700 Torr total pressure of air or N2 diluent at 296 ± 2 K. Rate constants k(OH + C6F5OH) = (6.88 ± 1.37) × 10-12 cm3 molecule-1 s-1 and k(Cl + C6F5OH) = (2.52 ± 0.31) × 10-11 cm3 s-1 molecule-1 in 700 Torr air diluent were determined. In 700 Torr N2, the rate constant for the reaction of C6F5OH with Cl atoms is linearly dependent on the Cl atom concentration. Product studies on this reaction in both 700 Torr air and 700 Torr N2 diluent show the formation of nonconjugated products. The photolysis constant of C6F5OH was determined by 254 nm UV irradiation of a C6F5OH and CH3CHO mixture in 700 Torr air or N2 at 296 ± 2 K and yielded a photolysis rate constant of J(C6F5OH) = (2.83 ± 0.25) × 10-3 s-1. Results are discussed with respect to the atmospheric chemistry of other halogenated aromatic species.
U2 - 10.1021/acs.jpca.9b07781
DO - 10.1021/acs.jpca.9b07781
M3 - Journal article
C2 - 31665882
AN - SCOPUS:85075124470
SN - 1089-5639
VL - 123
SP - 10315
EP - 10322
JO - Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory
JF - Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory
IS - 47
ER -