TY - JOUR
T1 - Astrocytoma cells upregulate expression of pro-inflammatory cytokines after co-culture with activated peripheral blood mononuclear cells
AU - Jehs, Tina Maria Ludowika
AU - Faber, Carsten
AU - Juel, Helene Bæk
AU - Nissen, Mogens Holst
PY - 2011/8
Y1 - 2011/8
N2 - In this study, we investigated the effect of CD3/CD28-activated peripheral blood mononuclear cells (PBMCs) on two human astrocytoma cell lines (1321N1 and CCF-STTG1), with respect to the expression of cytokines and chemokines. We used an in vitro co-culture system in which the astrocytoma cells and PBMCs were separated by a membrane in a transwell system. Proliferation of T cells was quantified by a [3H]-thymidine incorporation assay. Differential gene expression of astrocytoma cells cultured alone or with PBMCs was identified using gene arrays. Protein expression of CCL3, CCL5, CXCL8, CXCL9, CXCL10, IL6, and IL1β was determined by Luminex. Co-culture of activated T cells and astrocytoma cells resulted in inhibition of T cell proliferation. Moreover, astrocytoma cells upregulated a number of pro-inflammatory genes including CCL3, CCL5, CXCL8, CXCL9, CXCL10, IL6, and IL1β upon co-culture with activated PBMCs. These results were confirmed on the protein level. Astrocytoma cells inhibited the proliferation of T cells, indicating that astrocytes may play an important role in controlling T cell mediated immune responses in the brain. Contrary to this, soluble factors derived from CD3/CD28-activated PBMCs affected the transcriptome of astrocytoma cells, which then upregulated several pro-inflammatory genes and proteins. This could be part of neuroinflammatory events and may play a role in neurodegenerative diseases.
AB - In this study, we investigated the effect of CD3/CD28-activated peripheral blood mononuclear cells (PBMCs) on two human astrocytoma cell lines (1321N1 and CCF-STTG1), with respect to the expression of cytokines and chemokines. We used an in vitro co-culture system in which the astrocytoma cells and PBMCs were separated by a membrane in a transwell system. Proliferation of T cells was quantified by a [3H]-thymidine incorporation assay. Differential gene expression of astrocytoma cells cultured alone or with PBMCs was identified using gene arrays. Protein expression of CCL3, CCL5, CXCL8, CXCL9, CXCL10, IL6, and IL1β was determined by Luminex. Co-culture of activated T cells and astrocytoma cells resulted in inhibition of T cell proliferation. Moreover, astrocytoma cells upregulated a number of pro-inflammatory genes including CCL3, CCL5, CXCL8, CXCL9, CXCL10, IL6, and IL1β upon co-culture with activated PBMCs. These results were confirmed on the protein level. Astrocytoma cells inhibited the proliferation of T cells, indicating that astrocytes may play an important role in controlling T cell mediated immune responses in the brain. Contrary to this, soluble factors derived from CD3/CD28-activated PBMCs affected the transcriptome of astrocytoma cells, which then upregulated several pro-inflammatory genes and proteins. This could be part of neuroinflammatory events and may play a role in neurodegenerative diseases.
M3 - Journal article
SN - 0903-4641
VL - 119
SP - 551
EP - 561
JO - APMIS: Acta Pathologica, Microbiologica et Immunologica Scandinavica
JF - APMIS: Acta Pathologica, Microbiologica et Immunologica Scandinavica
IS - 8
ER -