TY - JOUR
T1 - Association of ficolin-3 with abdominal aortic aneurysm presence and progression
AU - Fernandez-García, C-E
AU - Burillo, E
AU - Lindholt, J S
AU - Martinez-Lopez, D
AU - Pilely, K
AU - Mazzeo, C
AU - Michel, J-B
AU - Egido, J
AU - Garred, P
AU - Blanco-Colio, L M
AU - Martin-Ventura, J L
N1 - © 2016 International Society on Thrombosis and Haemostasis.
PY - 2017/3/1
Y1 - 2017/3/1
N2 - Essentials Abdominal aortic aneurysm (AAA) is asymptomatic and its evolution unpredictable. To find novel potential biomarkers of AAA, microvesicles are an excellent source of biomarkers. Ficolin-3 is increased in microvesicles obtained from activated platelets and AAA tissue. Increased ficolin-3 plasma levels are associated with AAA presence and progression.SUMMARY: Background Abdominal aortic aneurysm (AAA) patients are usually asymptomatic and AAA evolution is unpredictable. Ficolin-3, mainly synthesized by the liver, is a molecule of the lectin complement-activation pathway involved in AAA pathophysiology. Objectives To define extra-hepatic sources of ficolin-3 in AAA and investigate the role of ficolin-3 as a biomarker of the presence and progression of AAA. Methods Microvesicles (exosomes and microparticles) were isolated from culture-conditioned medium of ADP-activated platelets, as well as from AAA tissue-conditioned medium (thrombus and wall). Ficolin-3 levels were analyzed by western-blot, real-time PCR, immunohistochemistry and ELISA. Results Increased ficolin-3 levels were observed in microvesicles isolated from activated platelets. Similarly, microvesicles released from AAA tissue display increased ficolin-3 levels as compared with those from healthy tissue. Moreover, ficolin-3 mRNA levels in the AAA wall were greatly increased compared with healthy aortic walls. Immunohistochemistry of AAA tissue demonstrated increased ficolin-3, whereas little staining was present in healthy walls. Finally, increased ficolin-3 levels were observed in AAA patients' plasma (n = 478) compared with control plasma (n = 176), which persisted after adjustment for risk factors (adjusted odds ratio [OR], 5.29; 95% confidence interval [CI], 3.27, 8.57)]. Moreover, a positive association of ficolin-3 with aortic diameter (Rho, 0.25) and need for surgical repair was observed, also after adjustment for potential confounding factors (adjusted hazard ratio, 1.55; 95% CI, 1.11, 2.15). Conclusions In addition to its hepatic expression, ficolin-3 may be released into the extracellular medium via microvesicles, by both activated cells and pathological AAA tissue. Ficolin-3 plasma levels are associated with the presence and progression of AAA, suggesting its potential role as a biomarker of AAA.
AB - Essentials Abdominal aortic aneurysm (AAA) is asymptomatic and its evolution unpredictable. To find novel potential biomarkers of AAA, microvesicles are an excellent source of biomarkers. Ficolin-3 is increased in microvesicles obtained from activated platelets and AAA tissue. Increased ficolin-3 plasma levels are associated with AAA presence and progression.SUMMARY: Background Abdominal aortic aneurysm (AAA) patients are usually asymptomatic and AAA evolution is unpredictable. Ficolin-3, mainly synthesized by the liver, is a molecule of the lectin complement-activation pathway involved in AAA pathophysiology. Objectives To define extra-hepatic sources of ficolin-3 in AAA and investigate the role of ficolin-3 as a biomarker of the presence and progression of AAA. Methods Microvesicles (exosomes and microparticles) were isolated from culture-conditioned medium of ADP-activated platelets, as well as from AAA tissue-conditioned medium (thrombus and wall). Ficolin-3 levels were analyzed by western-blot, real-time PCR, immunohistochemistry and ELISA. Results Increased ficolin-3 levels were observed in microvesicles isolated from activated platelets. Similarly, microvesicles released from AAA tissue display increased ficolin-3 levels as compared with those from healthy tissue. Moreover, ficolin-3 mRNA levels in the AAA wall were greatly increased compared with healthy aortic walls. Immunohistochemistry of AAA tissue demonstrated increased ficolin-3, whereas little staining was present in healthy walls. Finally, increased ficolin-3 levels were observed in AAA patients' plasma (n = 478) compared with control plasma (n = 176), which persisted after adjustment for risk factors (adjusted odds ratio [OR], 5.29; 95% confidence interval [CI], 3.27, 8.57)]. Moreover, a positive association of ficolin-3 with aortic diameter (Rho, 0.25) and need for surgical repair was observed, also after adjustment for potential confounding factors (adjusted hazard ratio, 1.55; 95% CI, 1.11, 2.15). Conclusions In addition to its hepatic expression, ficolin-3 may be released into the extracellular medium via microvesicles, by both activated cells and pathological AAA tissue. Ficolin-3 plasma levels are associated with the presence and progression of AAA, suggesting its potential role as a biomarker of AAA.
KW - Aged
KW - Aortic Aneurysm, Abdominal/blood
KW - Biomarkers/blood
KW - Blood Platelets/metabolism
KW - Culture Media, Conditioned/chemistry
KW - Denmark
KW - Disease Progression
KW - Glycoproteins/blood
KW - Humans
KW - Hypertension/diagnosis
KW - Lectins/blood
KW - Male
KW - Mass Screening
KW - Microcirculation
KW - Middle Aged
KW - Peripheral Arterial Disease/diagnosis
U2 - 10.1111/jth.13608
DO - 10.1111/jth.13608
M3 - Journal article
C2 - 28039962
SN - 1538-7933
VL - 15
SP - 575
EP - 585
JO - Journal of Thrombosis and Haemostasis
JF - Journal of Thrombosis and Haemostasis
IS - 3
ER -