Approximate distance oracles with improved query time

22 Citationer (Scopus)

Abstract

Given an undirected graph G with m edges, n vertices, and non-negative edge weights, and given an integer k ≥ 2, we show that a (2k - 1)-approximate distance oracle for G of size O(kn1+1/k) and with O(log k) query time can be constructed in O(min{kmn1/k, √km + kn 1+c/√k}) time for some constant c. This improves the O(k) query time of Thorup and Zwick. Furthermore, for any 0 < ε ≤ 1, we give an oracle of size O(kn1+1/k) that answers ((2 + ε)k)-approximate distance queries in O(1/ε) time. At the cost of a k-factor in size, this improves the 128k approximation achieved by the constant query time oracle of Mendel and Naor and approaches the best possible tradeoff between size and stretch, implied by a widely believed girth conjecture of Erdo{combining double acute accent}s. We can match the O(n1+1/k) size bound of Mendel and Naor for any constant ε > 0 and k = O(log n/ log log n).

OriginalsprogEngelsk
TitelProceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms
RedaktørerSanjeev Khanna
Antal sider11
ForlagAssociation for Computing Machinery
Publikationsdato2013
Sider539-549
ISBN (Trykt)978-1-61197-251-1
ISBN (Elektronisk)978-1-61197-310-5
DOI
StatusUdgivet - 2013
BegivenhedAnnual ACM-SIAM Symposium on Discrete Algorithms 2013 - New Orleans, USA
Varighed: 6 jan. 20138 jan. 2013
Konferencens nummer: 24

Konference

KonferenceAnnual ACM-SIAM Symposium on Discrete Algorithms 2013
Nummer24
Land/OmrådeUSA
ByNew Orleans
Periode06/01/201308/01/2013
NavnThe Annual A C M - S I A M Symposium on Discrete Algorithms. Proceedings
ISSN1071-9040

Fingeraftryk

Dyk ned i forskningsemnerne om 'Approximate distance oracles with improved query time'. Sammen danner de et unikt fingeraftryk.

Citationsformater