Approximate distance oracles with improved preprocessing time

32 Citationer (Scopus)

Abstract

Given an undirected graph G with m edges, n vertices, and non-negative edge weights, and given an integer k ≥ 1, we show that for some universal constant c, a (2k - 1)-approximate distance oracle for G of size O(kn 1+1/k) can be constructed in O(√km + kn 1+c/√k) time and can answer queries in O(k) time. We also give an oracle which is faster for smaller k. Our results break the quadratic preprocessing time bound of Baswana and Kavitha for all k ≥ 6 and improve the O(kmn1/k) time bound of Thorup and Zwick except for very sparse graphs and small k. When m = Ω(n1+c/√k) and k = O(1), our oracle is optimal w.r.t. both stretch, size, preprocessing time, and query time, assuming a widely believed girth conjecture by Erdocombining double acute accents.

OriginalsprogEngelsk
TitelProceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms
Antal sider7
ForlagSociety for Industrial and Applied Mathematics
Publikationsdato2012
Sider202-208
StatusUdgivet - 2012
Udgivet eksterntJa
BegivenhedAnnual ACM-SIAM Symposium on Discrete Algorithms 2012 - Kyoto, Japan
Varighed: 17 jan. 201219 jan. 2012
Konferencens nummer: 23

Konference

KonferenceAnnual ACM-SIAM Symposium on Discrete Algorithms 2012
Nummer23
Land/OmrådeJapan
ByKyoto
Periode17/01/201219/01/2012

Fingeraftryk

Dyk ned i forskningsemnerne om 'Approximate distance oracles with improved preprocessing time'. Sammen danner de et unikt fingeraftryk.

Citationsformater