TY - JOUR
T1 - Apolipoprotein CIII Reduces Proinflammatory Cytokine-Induced Apoptosis in Rat Pancreatic Islets via the Akt Prosurvival Pathway
AU - Størling, Joachim
AU - Juntti-Berggren, Lisa
AU - Olivecrona, Gunilla
AU - Prause, Michala C
AU - Berggren, Per-Olof
AU - Mandrup-Poulsen, Thomas
PY - 2011/8
Y1 - 2011/8
N2 - Apolipoprotein CIII (ApoCIII) is mainly synthesized in the liver and is important for triglyceride metabolism. The plasma concentration of ApoCIII is elevated in patients with type 1 diabetes (T1D), and in vitro ApoCIII causes apoptosis in pancreatic β-cells in the absence of inflammatory stress. Here, we investigated the effects of ApoCIII on function, signaling, and viability in intact rat pancreatic islets exposed to proinflammatory cytokines tomodelthe intraislet inflammatory milieu in T1D. In contrast to earlier observations in mouse β-cells, exposure of rat islets to ApoCIII alone (50 μg/ml) did not cause apoptosis. In the presence of the islet-cytotoxic cytokines IL-1β + interferon-γ, ApoCIII reduced cytokine-mediated islet cell death and impairment of β-cell function. ApoCIII had no effects on mitogen-activated protein kinases (c-Jun N-terminal kinase, p38, and ERK) and had no impact on IL-1β-induced c-Jun N-terminal kinase activation. However, ApoCIII augmented cytokine-mediated nitric oxide (NO) production and inducible NO synthase expression. Further, ApoCIII caused degradation of the nuclear factor κB-inhibitor inhibitor of κB and stimulated Ser473-phosphorylation of the survival serine-threonine kinase Akt. Inhibition of the Akt signaling pathway by the phosphatidylinositol 3 kinase inhibitor LY294002 counteracted the antiapoptotic effect of ApoCIII on cytokine-induced apoptosis. We conclude that ApoCIII in the presence of T1D-relevant proinflammatory cytokines reduces rat pancreatic islet cell apoptosis via Akt.
AB - Apolipoprotein CIII (ApoCIII) is mainly synthesized in the liver and is important for triglyceride metabolism. The plasma concentration of ApoCIII is elevated in patients with type 1 diabetes (T1D), and in vitro ApoCIII causes apoptosis in pancreatic β-cells in the absence of inflammatory stress. Here, we investigated the effects of ApoCIII on function, signaling, and viability in intact rat pancreatic islets exposed to proinflammatory cytokines tomodelthe intraislet inflammatory milieu in T1D. In contrast to earlier observations in mouse β-cells, exposure of rat islets to ApoCIII alone (50 μg/ml) did not cause apoptosis. In the presence of the islet-cytotoxic cytokines IL-1β + interferon-γ, ApoCIII reduced cytokine-mediated islet cell death and impairment of β-cell function. ApoCIII had no effects on mitogen-activated protein kinases (c-Jun N-terminal kinase, p38, and ERK) and had no impact on IL-1β-induced c-Jun N-terminal kinase activation. However, ApoCIII augmented cytokine-mediated nitric oxide (NO) production and inducible NO synthase expression. Further, ApoCIII caused degradation of the nuclear factor κB-inhibitor inhibitor of κB and stimulated Ser473-phosphorylation of the survival serine-threonine kinase Akt. Inhibition of the Akt signaling pathway by the phosphatidylinositol 3 kinase inhibitor LY294002 counteracted the antiapoptotic effect of ApoCIII on cytokine-induced apoptosis. We conclude that ApoCIII in the presence of T1D-relevant proinflammatory cytokines reduces rat pancreatic islet cell apoptosis via Akt.
U2 - 10.1210/en.2010-1422
DO - 10.1210/en.2010-1422
M3 - Journal article
C2 - 21693679
SN - 1945-7170
SN - 1945-7197
VL - 152
SP - 3040
EP - 3048
JO - Endocrinology
JF - Endocrinology
IS - 8
ER -