Anisotropic distributions on manifolds: template estimation and most probable paths

22 Citationer (Scopus)

Abstract

We use anisotropic diffusion processes to generalize normal distributions to manifolds and to construct a framework for likelihood estimation of template and covariance structure from manifold valued data. The procedure avoids the linearization that arise when first estimating a mean or template before performing PCA in the tangent space of the mean. We derive flow equations for the most probable paths reaching sampled data points, and we use the paths that are generally not geodesics for estimating the likelihood of the model. In contrast to existing template estimation approaches, accounting for anisotropy thus results in an algorithm that is not based on geodesic distances. To illustrate the effect of anisotropy and to point to further applications, we present experiments with anisotropic distributions on both the sphere and finite dimensional LDDMM manifolds arising in the landmark matching problem.

OriginalsprogEngelsk
TitelInformation processing in medical imaging : 24th International Conference, IPMI 2015, Sabhal Mor Ostaig, Isle of Skye, UK, June 28 - July 3, 2015, Proceedings
RedaktørerSebastien Ourselin, Daniel C. Alexander, Carl-Fredrik Westin, M. Jorge Cardoso
Antal sider12
ForlagSpringer
Publikationsdato2015
Sider193-204
Kapitel15
ISBN (Trykt)978-3-319-19991-7
DOI
StatusUdgivet - 2015
Begivenhed International Conference, IPMI 2015 - Sabhal Mor Ostaig, Isle of Skye, Storbritannien
Varighed: 28 jun. 20153 jul. 2015

Konference

Konference International Conference, IPMI 2015
Land/OmrådeStorbritannien
BySabhal Mor Ostaig, Isle of Skye
Periode28/06/201503/07/2015
NavnLecture notes in computer science
Vol/bind9123
ISSN0302-9743

Emneord

  • Template estimation
  • Manifold
  • Diffusion
  • Geodesics
  • Frame bundle
  • Most probable paths
  • Anisotropy

Fingeraftryk

Dyk ned i forskningsemnerne om 'Anisotropic distributions on manifolds: template estimation and most probable paths'. Sammen danner de et unikt fingeraftryk.

Citationsformater