An improved optimization method for the relevance voxel machine

Melanie Ganz, Mert R. Sabuncu, Koen Van Leemput

1 Citationer (Scopus)

Abstract

In this paper, we will re-visit the Relevance Voxel Machine (RVoxM), a recently developed sparse Bayesian framework used for predicting biological markers, e.g., presence of disease, from high-dimensional image data, e.g., brain MRI volumes. The proposed improvement, called IRVoxM, mitigates the shortcomings of the greedy optimization scheme of the original RVoxM algorithm by exploiting the form of the marginal likelihood function. In addition, it allows voxels to be added and deleted from the model during the optimization. In our experiments we show that IRVoxM outperforms RVoxM on synthetic data, achieving a better training cost and test root mean square error while yielding sparser models. We further evaluated IRVoxM's performance on real brain MRI scans from the OASIS data set, and observed the same behavior - IRVoxM retains good prediction performance while yielding much sparser models than RVoxM.

OriginalsprogEngelsk
TitelMachine Learning in Medical Imaging : 4th International Workshop, MLMI 2013, Held in Conjunction with MICCAI 2013, Nagoya, Japan, September 22, 2013. Proceedings
RedaktørerGuorong Wu, Daoqiang Zhang, Dinggang Shen, Pingkun Yan, Kenji Suzuki, Fei Wang
Antal sider8
ForlagSpringer
Publikationsdato2013
Sider147-154
ISBN (Trykt)978-3-319-02266-6
ISBN (Elektronisk)978-3-319-02267-3
DOI
StatusUdgivet - 2013
Begivenhed4th International Workshop on Machine Learning in Medical Imaging - Nagoya, Japan
Varighed: 22 sep. 201322 sep. 2013
Konferencens nummer: 4

Konference

Konference4th International Workshop on Machine Learning in Medical Imaging
Nummer4
Land/OmrådeJapan
ByNagoya
Periode22/09/201322/09/2013
NavnLecture notes in computer science
Vol/bind8184
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'An improved optimization method for the relevance voxel machine'. Sammen danner de et unikt fingeraftryk.

Citationsformater