TY - JOUR
T1 - Amplification of plant volatile defence against insect herbivory in a warming Arctic tundra
AU - Li, Tao
AU - Holst, Thomas
AU - Michelsen, Anders
AU - Rinnan, Riikka
N1 - CENPERM[2019]
PY - 2019
Y1 - 2019
N2 - Plant-emitted volatile organic compounds (VOCs) play fundamental roles in atmospheric chemistry and ecological processes by contributing to aerosol formation1 and mediating species interactions2. Rising temperatures and the associated shifts in vegetation composition have been shown to be the primary drivers of plant VOC emissions in Arctic ecosystems3. Although herbivorous insects also strongly alter plant VOC emissions2, no studies have addressed the impact of herbivory on plant VOC emissions in the Arctic. Here we show that warming dramatically increases the amount, and alters the blend, of VOCs released in response to herbivory. We observed that a tundra ecosystem subjected to warming, by open-top chambers, for 8 or 18 years showed a fourfold increase in leaf area eaten by insect herbivores. Herbivory by autumnal moth (Epirrita autumnata) larvae, and herbivory-mimicking methyl jasmonate application, on the widespread circumpolar dwarf birch (Betula nana) both substantially increased emissions of terpenoids. The long-term warming treatments and mimicked herbivory caused, on average, a two- and fourfold increase in monoterpene emissions, respectively. When combined, emissions increased 11-fold, revealing a strong synergy between warming and herbivory. The synergistic effect was even more pronounced for homoterpene emissions. These findings suggest that, in the rapidly warming Arctic, insect herbivory may be a primary determinant of VOC emissions during periods of active herbivore feeding.
AB - Plant-emitted volatile organic compounds (VOCs) play fundamental roles in atmospheric chemistry and ecological processes by contributing to aerosol formation1 and mediating species interactions2. Rising temperatures and the associated shifts in vegetation composition have been shown to be the primary drivers of plant VOC emissions in Arctic ecosystems3. Although herbivorous insects also strongly alter plant VOC emissions2, no studies have addressed the impact of herbivory on plant VOC emissions in the Arctic. Here we show that warming dramatically increases the amount, and alters the blend, of VOCs released in response to herbivory. We observed that a tundra ecosystem subjected to warming, by open-top chambers, for 8 or 18 years showed a fourfold increase in leaf area eaten by insect herbivores. Herbivory by autumnal moth (Epirrita autumnata) larvae, and herbivory-mimicking methyl jasmonate application, on the widespread circumpolar dwarf birch (Betula nana) both substantially increased emissions of terpenoids. The long-term warming treatments and mimicked herbivory caused, on average, a two- and fourfold increase in monoterpene emissions, respectively. When combined, emissions increased 11-fold, revealing a strong synergy between warming and herbivory. The synergistic effect was even more pronounced for homoterpene emissions. These findings suggest that, in the rapidly warming Arctic, insect herbivory may be a primary determinant of VOC emissions during periods of active herbivore feeding.
U2 - 10.1038/s41477-019-0439-3
DO - 10.1038/s41477-019-0439-3
M3 - Letter
C2 - 31182843
AN - SCOPUS:85067187126
SN - 2055-026X
VL - 5
SP - 568
EP - 574
JO - Nature Plants
JF - Nature Plants
IS - 6
ER -