Almost commuting orthogonal matrices

Terry A. Loring, Adam P. W. Sorensen

5 Citationer (Scopus)

Abstract

We show that two almost commuting real orthogonal matrices are uniformly close to exactly commuting real orthogonal matrices. We prove the same for symplectic unitary matrices. This is in contrast to the general complex case, where not all pairs of almost commuting unitaries are close to commuting pairs. Our techniques also yield results about almost normal matrices over the reals and the quaternions. We conclude with an example where the K-theoretical obstructions to approximation cannot be avoided. Our example is inspired by the physical systems known as topological superconductors.

OriginalsprogEngelsk
TidsskriftJournal of Mathematical Analysis and Applications
Vol/bind420
Udgave nummer2
Sider (fra-til)1051-1068
Antal sider18
ISSN0022-247X
DOI
StatusUdgivet - 15 dec. 2014

Fingeraftryk

Dyk ned i forskningsemnerne om 'Almost commuting orthogonal matrices'. Sammen danner de et unikt fingeraftryk.

Citationsformater