Abstract
For an undirected n-vertex graph G with non-negative edge-weights, we consider the following type of query: given two vertices s and t in G, what is the weight of a minimum st-cut in G? We solve this problem in preprocessing time O(n log3 n) for graphs of bounded genus, giving the first sub-quadratic time algorithm for this class of graphs. Our result also improves by a logarithmic factor a previous algorithm by Borradaile, Sankowski and Wulff-Nilsen (FOCS 2010) that applied only to planar graphs. Our algorithm constructs a Gomory-Hu tree for the given graph, providing a data structure with space O(n) that can answer minimum-cut queries in constant time. The dependence on the genus of the input graph in our preprocessing time is 2O(g2).
Originalsprog | Engelsk |
---|---|
Titel | 32nd International Symposium on Computational Geometry (SoCG 2016) |
Redaktører | Sandor Fekete, Anna Lubiw |
Antal sider | 16 |
Forlag | Schloss Dagstuhl - Leibniz-Zentrum für Informatik |
Publikationsdato | 1 jun. 2016 |
ISBN (Elektronisk) | 978-3-95977-009-5 |
DOI | |
Status | Udgivet - 1 jun. 2016 |
Begivenhed | International Symposium on Computational Geometry (SoCG 2016) - Boston, MA, USA Varighed: 14 jun. 2016 → 18 jun. 2016 Konferencens nummer: 32 |
Konference
Konference | International Symposium on Computational Geometry (SoCG 2016) |
---|---|
Nummer | 32 |
Land/Område | USA |
By | Boston, MA |
Periode | 14/06/2016 → 18/06/2016 |
Navn | Leibniz International Proceedings in Informatics |
---|---|
Vol/bind | 51 |
ISSN | 1868-8969 |