All-pairs minimum cuts in near-linear time for surface-embedded graphs

Glencora Borradaile, David Eppstein, Amir Nayyeri, Christian Wulff-Nilsen

12 Citationer (Scopus)
25 Downloads (Pure)

Abstract

For an undirected n-vertex graph G with non-negative edge-weights, we consider the following type of query: given two vertices s and t in G, what is the weight of a minimum st-cut in G? We solve this problem in preprocessing time O(n log3 n) for graphs of bounded genus, giving the first sub-quadratic time algorithm for this class of graphs. Our result also improves by a logarithmic factor a previous algorithm by Borradaile, Sankowski and Wulff-Nilsen (FOCS 2010) that applied only to planar graphs. Our algorithm constructs a Gomory-Hu tree for the given graph, providing a data structure with space O(n) that can answer minimum-cut queries in constant time. The dependence on the genus of the input graph in our preprocessing time is 2O(g2).

OriginalsprogEngelsk
Titel32nd International Symposium on Computational Geometry (SoCG 2016)
RedaktørerSandor Fekete, Anna Lubiw
Antal sider16
ForlagSchloss Dagstuhl - Leibniz-Zentrum für Informatik
Publikationsdato1 jun. 2016
ISBN (Elektronisk)978-3-95977-009-5
DOI
StatusUdgivet - 1 jun. 2016
BegivenhedInternational Symposium on Computational Geometry (SoCG 2016) - Boston, MA, USA
Varighed: 14 jun. 201618 jun. 2016
Konferencens nummer: 32

Konference

KonferenceInternational Symposium on Computational Geometry (SoCG 2016)
Nummer32
Land/OmrådeUSA
ByBoston, MA
Periode14/06/201618/06/2016
NavnLeibniz International Proceedings in Informatics
Vol/bind51
ISSN1868-8969

Fingeraftryk

Dyk ned i forskningsemnerne om 'All-pairs minimum cuts in near-linear time for surface-embedded graphs'. Sammen danner de et unikt fingeraftryk.

Citationsformater