TY - JOUR
T1 - Aerobic Exercise Training Increases Muscle Water Content in Obese Middle-Age Men
AU - Mora-Rodríguez, Ricardo
AU - Sanchez-Roncero, Alicia
AU - Fernández-Elías, Valentin Emilio
AU - Guadalupe-Grau, Amelia
AU - Ortega, Juan Fernando
AU - Dela, Flemming
AU - Helge, Jorn Wulff
PY - 2016/5/1
Y1 - 2016/5/1
N2 - Purpose The objective of this study is to determine whether muscle water content (H 2 O muscle) expands with training in deconditioned middle-age men and the effects of this expansion in other muscle metabolites. Methods Eighteen obese (BMI = 33 ± 3 kg·m -2) untrained (VO 2peak = 29 ± 7 mL -1 ·kg -1 ·min -1) metabolic syndrome men completed a 4-month aerobic cycling training program. Vastus lateralis muscle biopsies were collected before and 72 h after the completion of the last training bout. Water content, total protein, glycogen concentration, and citrate synthase activity were measured in biopsy tissue. Body composition was assessed using dual-energy X-ray absorptiometry, and cardiometabolic fitness was measured during an incremental cycling test. Results Body weight and fat mass were reduced -1.9% and -5.4%, respectively (P < 0.05), whereas leg fat free mass increased with training (1.8%, P = 0.023). Cardiorespiratory fitness (i.e., VO 2peak), exercise maximal fat oxidation (i.e., FO max), and maximal cycling power (i.e., W max) improved with training (11%, 33%, and 10%, respectively; P < 0.05). After 4 months of training, H 2 O muscle increased from 783 ± 18 to 799 ± 24 g·kg -1 wet weight (ww) (2%, P = 0.011), whereas muscle protein concentration decreased 11% (145 ± 15 to 129 ± 13 g·kg -1 ww, P = 0.007). Citrate synthase activity (proxy for mitochondrial density) increased by 31% (17 ± 5 to 22 ± 5 mmol·min -1 ·kg -1 ww, P = 0.024). Muscle glycogen concentration increased by 14% (22 ± 7 to 25 ± 7 g·kg -1 ww) although without reaching statistical significance when expressed as per kilogram of wet weight (P = 0.15). Conclusions Our findings suggest that aerobic cycling training increases quadriceps muscle water although reduces muscle protein concentration in obese metabolic syndrome men. Reduced protein concentration coexists with increased leg lean mass suggestive of a water dilution effect that however does not impair increased cycling leg power with training.
AB - Purpose The objective of this study is to determine whether muscle water content (H 2 O muscle) expands with training in deconditioned middle-age men and the effects of this expansion in other muscle metabolites. Methods Eighteen obese (BMI = 33 ± 3 kg·m -2) untrained (VO 2peak = 29 ± 7 mL -1 ·kg -1 ·min -1) metabolic syndrome men completed a 4-month aerobic cycling training program. Vastus lateralis muscle biopsies were collected before and 72 h after the completion of the last training bout. Water content, total protein, glycogen concentration, and citrate synthase activity were measured in biopsy tissue. Body composition was assessed using dual-energy X-ray absorptiometry, and cardiometabolic fitness was measured during an incremental cycling test. Results Body weight and fat mass were reduced -1.9% and -5.4%, respectively (P < 0.05), whereas leg fat free mass increased with training (1.8%, P = 0.023). Cardiorespiratory fitness (i.e., VO 2peak), exercise maximal fat oxidation (i.e., FO max), and maximal cycling power (i.e., W max) improved with training (11%, 33%, and 10%, respectively; P < 0.05). After 4 months of training, H 2 O muscle increased from 783 ± 18 to 799 ± 24 g·kg -1 wet weight (ww) (2%, P = 0.011), whereas muscle protein concentration decreased 11% (145 ± 15 to 129 ± 13 g·kg -1 ww, P = 0.007). Citrate synthase activity (proxy for mitochondrial density) increased by 31% (17 ± 5 to 22 ± 5 mmol·min -1 ·kg -1 ww, P = 0.024). Muscle glycogen concentration increased by 14% (22 ± 7 to 25 ± 7 g·kg -1 ww) although without reaching statistical significance when expressed as per kilogram of wet weight (P = 0.15). Conclusions Our findings suggest that aerobic cycling training increases quadriceps muscle water although reduces muscle protein concentration in obese metabolic syndrome men. Reduced protein concentration coexists with increased leg lean mass suggestive of a water dilution effect that however does not impair increased cycling leg power with training.
U2 - 10.1249/MSS.0000000000000848
DO - 10.1249/MSS.0000000000000848
M3 - Journal article
C2 - 26694843
SN - 0195-9131
VL - 48
SP - 822
EP - 828
JO - Medicine and Science in Sports and Exercise
JF - Medicine and Science in Sports and Exercise
IS - 5
ER -