Adapting taggers to Twitter with not-so-distant supervision

Barbara Plank, Dirk Hovy, Ryan McDonald, Anders Søgaard

17 Citationer (Scopus)

Abstract

We experiment with using different sources of distant supervision to guide unsupervised and semi-supervised adaptation of part-of-speech (POS) and named entity taggers (NER) to Twitter. We show that a particularly good source of not-so-distant supervision is linked websites. Specifically, with this source of supervision we are able to improve over the state-of-the-art for Twitter POS tagging (89.76% accuracy, 8% error reduction) and NER (F1=79.4%, 10% error reduction).

OriginalsprogEngelsk
TitelProceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers
UdgivelsesstedDublin, Ireland
ForlagAssociation for Computational Linguistics
Publikationsdato2014
Sider1783-1792
StatusUdgivet - 2014

Fingeraftryk

Dyk ned i forskningsemnerne om 'Adapting taggers to Twitter with not-so-distant supervision'. Sammen danner de et unikt fingeraftryk.

Citationsformater