TY - JOUR
T1 - Acute volume expansion attenuates hyperthermia-induced reductions in cerebral perfusion during simulated hemorrhage
AU - Schlader, Zachary J
AU - Seifert, Thomas
AU - Wilson, Thad E
AU - Bundgaard-Nielsen, Morten
AU - Secher, Niels H
AU - Crandall, Craig G
PY - 2013/6/15
Y1 - 2013/6/15
N2 - Hyperthermia reduces the capacity to withstand a simulated hemorrhagic challenge, but volume loading preserves this capacity. This study tested the hypotheses that acute volume expansion during hyperthermia increases cerebral perfusion and attenuates reductions in cerebral perfusion during a simulated hemorrhagic challenge induced by lower- body negative pressure (LBNP). Eight healthy young male subjects underwent a supine baseline period (pre-LBNP), followed by 15- and 30-mmHg LBNP while normothermic, hyperthermic (increased pulmonary artery blood temperature ∼1.1°C), and following acute volume infusion while hyperthermic. Primary dependent variables were mean middle cerebral artery blood velocity (MCAvmean), serving as an index of cerebral perfusion; mean arterial pressure (MAP); and cardiac output (thermodilution). During baseline, hyperthermia reduced MCAvmean (P = 0.001) by 12 ± 9% relative to normothermia. Volume infusion while hyperthermic increased cardiac output by 2.8 ± 1.4 l/min (P < 0.001), but did not alter MCAvmean (P = 0.99) or MAP (P = 0.39) compared with hyperthermia alone. Relative to hyperthermia, at 30-mmHg LBNP acute volume infusion attenuated reductions (P < 0.001) in cardiac output (by 2.5 ± 0.9 l/min; P < 0.001), MAP (by 5 ± 6 mmHg; P = 0.004), and MCAvmean (by 12 ± 13%; P = 0.002). These data indicate that acute volume expansion does not reverse hyperthermia-induced reductions in cerebral perfusion pre-LBNP, but that it does attenuate reductions in cerebral perfusion during simulated hemorrhage in hyperthermic humans.
AB - Hyperthermia reduces the capacity to withstand a simulated hemorrhagic challenge, but volume loading preserves this capacity. This study tested the hypotheses that acute volume expansion during hyperthermia increases cerebral perfusion and attenuates reductions in cerebral perfusion during a simulated hemorrhagic challenge induced by lower- body negative pressure (LBNP). Eight healthy young male subjects underwent a supine baseline period (pre-LBNP), followed by 15- and 30-mmHg LBNP while normothermic, hyperthermic (increased pulmonary artery blood temperature ∼1.1°C), and following acute volume infusion while hyperthermic. Primary dependent variables were mean middle cerebral artery blood velocity (MCAvmean), serving as an index of cerebral perfusion; mean arterial pressure (MAP); and cardiac output (thermodilution). During baseline, hyperthermia reduced MCAvmean (P = 0.001) by 12 ± 9% relative to normothermia. Volume infusion while hyperthermic increased cardiac output by 2.8 ± 1.4 l/min (P < 0.001), but did not alter MCAvmean (P = 0.99) or MAP (P = 0.39) compared with hyperthermia alone. Relative to hyperthermia, at 30-mmHg LBNP acute volume infusion attenuated reductions (P < 0.001) in cardiac output (by 2.5 ± 0.9 l/min; P < 0.001), MAP (by 5 ± 6 mmHg; P = 0.004), and MCAvmean (by 12 ± 13%; P = 0.002). These data indicate that acute volume expansion does not reverse hyperthermia-induced reductions in cerebral perfusion pre-LBNP, but that it does attenuate reductions in cerebral perfusion during simulated hemorrhage in hyperthermic humans.
U2 - 10.1152/japplphysiol.00079.2013
DO - 10.1152/japplphysiol.00079.2013
M3 - Journal article
C2 - 23580601
SN - 8750-7587
VL - 114
SP - 1730
EP - 1735
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 12
ER -