Active Learning for Sense Annotation

Hector Martinez Alonso, Barbara Plank, Anders Trærup Johannsen, Anders Søgaard

Abstract

This article describes a real (nonsynthetic) active-learning experiment to obtain supersense annotations for Danish. We compare two instance selection strategies, namely lowest-prediction confidence (MAX), and sampling from the confidence distribution (SAMPLE). We evaluate their performance during the annotation process, across domains for the final resulting system, as well as against in-domain adjudicated data. The SAMPLE strategy yields competitive models that are more robust than the overly length-biased selection criterion of MAX.

OriginalsprogEngelsk
TitelProceedings of the 20th Nordic Conference of Computational Linguistics : NODALIDA 2015
Antal sider5
UdgivelsesstedLinköping
ForlagLinköping University Electronic Press
Publikationsdato2015
Sider245-250
ISBN (Elektronisk)978-91-7519-098-3
StatusUdgivet - 2015
NavnNEALT Proceedings Series
Vol/bind23
ISSN1736-6305

Fingeraftryk

Dyk ned i forskningsemnerne om 'Active Learning for Sense Annotation'. Sammen danner de et unikt fingeraftryk.

Citationsformater