TY - JOUR
T1 - Acetylenic scaffolding with subphthalocyanines – synthetic scope and elucidation of electronic interactions in dimeric structures
AU - Gotfredsen, Henrik
AU - Broløs, Line
AU - Holmstrøm, Thomas
AU - Sørensen, Jacob
AU - Viñas Muñoz, Alberto
AU - Kilde, Martin Drøhse
AU - Skov, Anders B.
AU - Santella, Marco
AU - Hammerich, Ole
AU - Nielsen, Mogens Brøndsted
PY - 2017
Y1 - 2017
N2 - Boron subphthalocyanines (SubPcs) are powerful chromophoric heterocycles that can be synthetically modified at both axial and peripheral positions. Acetylenic scaffolding offers the possibility of building large, unsaturated carbon-rich frameworks that can exhibit excellent electron-accepting properties, and when combined with SubPcs it presents a convenient method for preparing interesting chromophore-acceptor architectures. Here we present synthetic methodologies for the post-functionalization of the relatively sensitive SubPc chromophore via acetylenic coupling reactions. By gentle AlCl3-mediated alkynylation at the axial boron position, we managed to anchor two SubPcs to the geminal positions of a tetraethynylethene (TEE) acceptor. Convenient conditions that allow for stepwise desilylations of trimethylsilyl (TMS) and triisopropylsilyl (TIPS) protected SubPc-decorated acetylenes using silver(i) fluoride were developed. The resulting terminal alkynes were successfully used as coupling partners in metal-catalyzed couplings, providing access to larger acetylenic SubPc scaffolds and multiple chromophore systems. Moreover, conditions allowing for the conversion of a terminal alkyne into an iodoalkyne in the presence of SubPc were developed, and the product was subjected to cross-coupling reactions affording unsymmetrical 1,3-butadiynes. The degree of interactions between two SubPc units as a function of the acetylenic bridge was studied by UV-Vis absorption spectroscopy and cyclic voltammetry. A TEE bridging unit was found to strongly influence the reductions and oxidations of the two SubPc units, while a more flexible bridge had no influence.
AB - Boron subphthalocyanines (SubPcs) are powerful chromophoric heterocycles that can be synthetically modified at both axial and peripheral positions. Acetylenic scaffolding offers the possibility of building large, unsaturated carbon-rich frameworks that can exhibit excellent electron-accepting properties, and when combined with SubPcs it presents a convenient method for preparing interesting chromophore-acceptor architectures. Here we present synthetic methodologies for the post-functionalization of the relatively sensitive SubPc chromophore via acetylenic coupling reactions. By gentle AlCl3-mediated alkynylation at the axial boron position, we managed to anchor two SubPcs to the geminal positions of a tetraethynylethene (TEE) acceptor. Convenient conditions that allow for stepwise desilylations of trimethylsilyl (TMS) and triisopropylsilyl (TIPS) protected SubPc-decorated acetylenes using silver(i) fluoride were developed. The resulting terminal alkynes were successfully used as coupling partners in metal-catalyzed couplings, providing access to larger acetylenic SubPc scaffolds and multiple chromophore systems. Moreover, conditions allowing for the conversion of a terminal alkyne into an iodoalkyne in the presence of SubPc were developed, and the product was subjected to cross-coupling reactions affording unsymmetrical 1,3-butadiynes. The degree of interactions between two SubPc units as a function of the acetylenic bridge was studied by UV-Vis absorption spectroscopy and cyclic voltammetry. A TEE bridging unit was found to strongly influence the reductions and oxidations of the two SubPc units, while a more flexible bridge had no influence.
U2 - 10.1039/C7OB01907F
DO - 10.1039/C7OB01907F
M3 - Journal article
SN - 1477-0520
VL - 15
SP - 9809
EP - 9823
JO - Organic & Biomolecular Chemistry
JF - Organic & Biomolecular Chemistry
IS - 46
ER -