Abstract
Background: T1DM is a T-cell-mediated autoimmune disease targeting insulin-producing beta-cells. Multiple factors may contribute to the development of T1DM. Among these, the metabolic state of beta-cells and pro-inflammatory cytokines, produced by infiltrating immune cells, have been implicated in the precipitation of T1DM. Methods and Results: In this study, confocal immunofluorescence microscopy of human pancreata revealed a distinct subset of beta-cells expressing the innate LPS co-receptor CD14. Human islets expressed fully functional CD14 as LPS stimulation led to a dose-dependent secretion of tumour necrosis factor (TNFα), interleukin (IL)-1β and IL-8, which were substantially inhibited by a blocking anti-CD14 mAb. In addition, LPS stimulation impaired the glucose-mediated insulin secretion in rat islets. β-GalCer and sulfatide, glycolipids that are related to insulin processing and secretion, are possibly interacting with the CD14 receptor complex. β-GalCer had an LPS-like, serum- and CD14-dependent effect on the induction of pro-inflammatory cytokines in a human monocyte cell line. In contrast, the LPS-mediated cytokine production was inhibited by sulfatide. Human islets also responded to β-GalCer (10 μg/mL) by secreting TNFα IL-1β and IL-8, whereas sulfatide partly inhibited the effect of LPS. Conclusions: A subset of human beta-cells expresses functional CD14 receptor and thus is able to recognize both exogenous bacterial (LPS) as well as endogenous ligands (e.g. glycolipids of beta-cell origin). The CD14 expression on a subset of human beta-cells may play a role in the innate surveillance of the endocrine environment but may also contribute to innate immune mechanisms in the early stages of beta-cell aggression.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Diabetes - Metabolism: Research and Reviews (Online Edition) |
Vol/bind | 26 |
Udgave nummer | 8 |
Sider (fra-til) | 656-67 |
Antal sider | 12 |
ISSN | 1520-7560 |
DOI | |
Status | Udgivet - 1 nov. 2010 |