Abstract
Template estimation plays a crucial role in computational anatomy since it provides reference frames for performing statistical analysis of the underlying anatomical population variability. While building models for template estimation, variability in sites and image acquisition protocols need to be accounted for. To account for such variability, we propose a generative template estimation model that makes simultaneous inference of both bias fields in individual images, deformations for image registration, and variance hyperparameters. In contrast, existing maximum a posterori based methods need to rely on either bias-invariant similarity measures or robust image normalization. Results on synthetic and real brain MRI images demonstrate the capability of the model to capture heterogeneity in intensities and provide a reliable template estimation from registration.
Originalsprog | Engelsk |
---|---|
Titel | Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging : MICCAI 2016 International Workshops, MCV and BAMBI, Athens, Greece, October 21, 2016, Revised Selected Papers |
Redaktører | Henning Müller, B. Michael Kelm, Tal Arbel, Weidong Cai, M. Jorge Cardoso, Georg Langs, Bjoern Menze, Dmitris Metaxas, Albert Montillo, William M. Wells, Shaoting Zhang, Albert C. S. Chung, Mark Jenkinson, Annemie Ribbens |
Antal sider | 9 |
Forlag | Springer |
Publikationsdato | 2017 |
Sider | 151-159 |
ISBN (Trykt) | 978-3-319-61187-7 |
ISBN (Elektronisk) | 978-3-319-61188-4 |
DOI | |
Status | Udgivet - 2017 |
Begivenhed | 3rd International Workshop on Bayesian and Graphical Models for Biomedical Imaging - Athen, Grækenland Varighed: 21 okt. 2016 → 21 okt. 2016 Konferencens nummer: 3 |
Workshop
Workshop | 3rd International Workshop on Bayesian and Graphical Models for Biomedical Imaging |
---|---|
Nummer | 3 |
Land/Område | Grækenland |
By | Athen |
Periode | 21/10/2016 → 21/10/2016 |
Navn | Lecture notes in computer science |
---|---|
Vol/bind | 10081 |
ISSN | 0302-9743 |