A static SMC sampler on shapes for the automated segmentation of aortic calcifications

Bidragets oversatte titel: A static SMC sampler on shapes for the automated segmentation of aortic calcifications

Peter Kersten Petersen, Mads Nielsen, Sami S. Brandt

4 Citationer (Scopus)

Abstract

In this paper, we propose a sampling-based shape segmentation method that builds upon a global shape and a local appearance model. It is suited for challenging problems where there is high uncertainty about the correct solution due to a low signal-to-noise ratio, clutter, occlusions or an erroneous model. Our method suits for segmentation tasks where the number of objects is not known a priori, or where the object of interest is invisible and can only be inferred from other objects in the image. The method was inspired by shape particle filtering from de Bruijne and Nielsen, but shows substantial improvements to it. The principal contributions of this paper are as follows: (i) We introduce statistically motivated importance weights that lead to better performance and facilitate the application to new problems. (ii) We adapt the static sequential Monte Carlo (SMC) algorithm to the problem of image segmentation, where the algorithm proves to sample efficiently from high-dimensional static spaces. (iii) We evaluate the static SMC sampler on shapes on a medical problem of high relevance: the automated quantification of aortic calcifications on X-ray radiographs for the prognosis and diagnosis of cardiovascular disease and mortality. Our results suggest that the static SMC sampler on shapes is more generic, robust, and accurate than shape particle filtering, while being computationally equally costly.

Bidragets oversatte titelA static SMC sampler on shapes for the automated segmentation of aortic calcifications
OriginalsprogEngelsk
TitelComputer Vision – ECCV 2010 : 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part IV
RedaktørerKostas Daniilidis, Petros Maragos, Nikos Paragios
Antal sider14
ForlagSpringer
Publikationsdato2010
Sider666-679
ISBN (Trykt)978-3-642-15560-4
ISBN (Elektronisk)978-3-642-15561-1
DOI
StatusUdgivet - 2010
Begivenhed11th European Conference on Computer Vision - Heraklion, Grækenland
Varighed: 5 sep. 201011 sep. 2010
Konferencens nummer: 11

Konference

Konference11th European Conference on Computer Vision
Nummer11
Land/OmrådeGrækenland
ByHeraklion
Periode05/09/201011/09/2010
NavnLecture notes in computer science
Vol/bind6314
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'A static SMC sampler on shapes for the automated segmentation of aortic calcifications'. Sammen danner de et unikt fingeraftryk.

Citationsformater