A low-cost, multiplexable, automated flow cytometry procedure for the characterization of microbial stress dynamics in bioreactors

Alison Brognaux, Shanshan Han, Søren Johannes Sørensen, Frederic Lebeau, Philippe Thonart, Frank Delvigne

39 Citationer (Scopus)
504 Downloads (Pure)

Abstract

BACKGROUND:Microbial cell population heterogeneity is now recognized as a major source of issues in the development and optimization of bioprocesses. Even if single cell technologies are available for the study of microbial population heterogeneity, only a few of these methods are available in order to study the dynamics of segregation directly in bioreactors. In this context, specific interfaces have been developed in order to connect a flow cytometer directly to a bioreactor for automated analyses. In this work, we propose a simplified version of such an interface and demonstrate its usefulness for multiplexed experiments.RESULTS:A low-cost automated flow cytometer has been used in order to monitor the synthesis of a destabilized Green Fluorescent Protein (GFP) under the regulation of the fis promoter and propidium iodide (PI) uptake. The results obtained showed that the dynamics of GFP synthesis are complex and can be attributed to a complex set of biological parameters, i.e. on the one hand the release of protein into the extracellular medium and its uptake modifying the activity of the fis promoter, and on the other hand the stability of the GFP molecule itself, which can be attributed to the protease content and energy status of the cells. In this respect, multiplexed experiments have shown a correlation between heat shock and ATP content and the stability of the reporter molecule.CONCLUSION:This work demonstrates that a simplified version of on-line FC can be used at the process level or in a multiplexed version to investigate the dynamics of complex physiological mechanisms. In this respect, the determination of new on-line parameters derived from automated FC is of primary importance in order to fully integrate the power of FC in dedicated feedback control loops.
OriginalsprogEngelsk
TidsskriftMicrobial Cell Factories
Vol/bind12
Udgave nummer100
Antal sider14
ISSN1475-2859
DOI
StatusUdgivet - 31 okt. 2013

Citationsformater