A logarithmic interpretation of Edixhoven's jumps for Jacobians

Bidragets oversatte titel: A logarithmic interpretation of Edixhoven's jumps for Jacobians

Dennis Eriksson, Lars Halvard Halle, Johannes Nicaise

4 Citationer (Scopus)

Abstract

Let $A$ be an abelian variety over a discretely valued field. Edixhoven has defined a filtration on the special fiber of the N\'eron model of $A$ that measures the behaviour of the N\'eron model under tame base change. We interpret the jumps in this filtration in terms of lattices of logarithmic differential forms in the case where $A$ is the Jacobian of a curve $C$, and we give a compact explicit formula for the jumps in terms of the combinatorial reduction data of $C$.
Bidragets oversatte titelA logarithmic interpretation of Edixhoven's jumps for Jacobians
OriginalsprogEngelsk
TidsskriftAdvances in Mathematics
Vol/bind279
Sider (fra-til)532–574
ISSN0001-8708
DOI
StatusUdgivet - 6 jul. 2015

Fingeraftryk

Dyk ned i forskningsemnerne om 'A logarithmic interpretation of Edixhoven's jumps for Jacobians'. Sammen danner de et unikt fingeraftryk.

Citationsformater