Abstract
Fleischner's theorem says that the square of every 2-connected graph contains a Hamiltonian cycle. We present a proof resulting in an O(|E|) algorithm for producing a Hamiltonian cycle in the square G2 of a 2-connected graph G = (V;E). The previous best was O(|V |2) by Lau in 1980. More generally, we get an O(|E|) algorithm for producing a Hamiltonian path between any two prescribed vertices, and we get an O(|V |2) algorithm for producing cycles C3;C4; : : : ;C|V| in G2 of lengths 3; 4; : : : ; |V|, respectively.
Originalsprog | Engelsk |
---|---|
Titel | Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms |
Redaktører | Artur Czumaj |
Forlag | Society for Industrial and Applied Mathematics |
Publikationsdato | 2018 |
Sider | 1645-1649 |
ISBN (Trykt) | 978-161197503-1 |
DOI | |
Status | Udgivet - 2018 |
Begivenhed | 29th Annual ACM-SIAM Symposium on Discrete Algorithms - New Orleans, USA Varighed: 7 jan. 2018 → 10 jan. 2018 Konferencens nummer: 29 |
Konference
Konference | 29th Annual ACM-SIAM Symposium on Discrete Algorithms |
---|---|
Nummer | 29 |
Land/Område | USA |
By | New Orleans |
Periode | 07/01/2018 → 10/01/2018 |