A Hamiltonian Cycle in the Square of a 2-connected Graph in Linear Time

Stephen Alstrup, A Georgakopoulos, Eva Rotenberg, Carsten Thomassen

    1 Citationer (Scopus)

    Abstract

    Fleischner's theorem says that the square of every 2-connected graph contains a Hamiltonian cycle. We present a proof resulting in an O(|E|) algorithm for producing a Hamiltonian cycle in the square G2 of a 2-connected graph G = (V;E). The previous best was O(|V |2) by Lau in 1980. More generally, we get an O(|E|) algorithm for producing a Hamiltonian path between any two prescribed vertices, and we get an O(|V |2) algorithm for producing cycles C3;C4; : : : ;C|V| in G2 of lengths 3; 4; : : : ; |V|, respectively.

    OriginalsprogEngelsk
    TitelProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
    RedaktørerArtur Czumaj
    ForlagSociety for Industrial and Applied Mathematics
    Publikationsdato2018
    Sider1645-1649
    ISBN (Trykt)978-161197503-1
    DOI
    StatusUdgivet - 2018
    Begivenhed29th Annual ACM-SIAM Symposium on Discrete Algorithms - New Orleans, USA
    Varighed: 7 jan. 201810 jan. 2018
    Konferencens nummer: 29

    Konference

    Konference29th Annual ACM-SIAM Symposium on Discrete Algorithms
    Nummer29
    Land/OmrådeUSA
    ByNew Orleans
    Periode07/01/201810/01/2018

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'A Hamiltonian Cycle in the Square of a 2-connected Graph in Linear Time'. Sammen danner de et unikt fingeraftryk.

    Citationsformater