TY - JOUR
T1 - A framework for consistent estimation of leaf area index, fraction of absorbed photosynthetically active radiation, and surface albedo from MODIS time-series data
AU - Xiao, Zhiqiang
AU - Liang, Shunlin
AU - Wang, Jindi
AU - Xie, Donghui
AU - Song, Jinling
AU - Fensholt, Rasmus
PY - 2015/6/1
Y1 - 2015/6/1
N2 - Currently available land-surface parameter products are generated using parameter-specific algorithms from various satellite data and contain several inconsistencies. This paper developed a new data assimilation framework for consistent estimation of multiple land-surface parameters from time-series MODerate Resolution Imaging Spectroradiometer (MODIS) surface reflectance data. If the reflectance data showed snow-free areas, an ensemble Kalman filter (EnKF) technique was used to estimate leaf area index (LAI) for a two-layer canopy reflectance model (ACRM) by combining predictions from a phenology model and the MODIS surface reflectance data. The estimated LAI values were then input into the ACRM to calculate the surface albedo and the fraction of absorbed photosynthetically active radiation (FAPAR). For snow-covered areas, the surface albedo was calculated as the underlying vegetation canopy albedo plus the weighted distance between the underlying vegetation canopy albedo and the albedo over deep snow. The LAI/FAPAR and surface albedo values estimated using this framework were compared with MODIS collection 5 eight-day 1-km LAI/FAPAR products (MOD15A2) and 500-m surface albedo product (MCD43A3), and GEOV1 LAI/FAPAR products at 1/112° spatial resolution and a ten-day frequency, respectively, and validated by ground measurement data from several sites with different vegetation types. The results demonstrate that this new data assimilation framework can estimate temporally complete land-surface parameter profiles from MODIS time-series reflectance data even if some of the reflectance data are contaminated by residual cloud or are missing and that the retrieved LAI, FAPAR, and surface albedo values are physically consistent. The root mean square errors of the retrieved LAI, FAPAR, and surface albedo against ground measurements are 0.5791, 0.0453, and 0.0190, respectively.
AB - Currently available land-surface parameter products are generated using parameter-specific algorithms from various satellite data and contain several inconsistencies. This paper developed a new data assimilation framework for consistent estimation of multiple land-surface parameters from time-series MODerate Resolution Imaging Spectroradiometer (MODIS) surface reflectance data. If the reflectance data showed snow-free areas, an ensemble Kalman filter (EnKF) technique was used to estimate leaf area index (LAI) for a two-layer canopy reflectance model (ACRM) by combining predictions from a phenology model and the MODIS surface reflectance data. The estimated LAI values were then input into the ACRM to calculate the surface albedo and the fraction of absorbed photosynthetically active radiation (FAPAR). For snow-covered areas, the surface albedo was calculated as the underlying vegetation canopy albedo plus the weighted distance between the underlying vegetation canopy albedo and the albedo over deep snow. The LAI/FAPAR and surface albedo values estimated using this framework were compared with MODIS collection 5 eight-day 1-km LAI/FAPAR products (MOD15A2) and 500-m surface albedo product (MCD43A3), and GEOV1 LAI/FAPAR products at 1/112° spatial resolution and a ten-day frequency, respectively, and validated by ground measurement data from several sites with different vegetation types. The results demonstrate that this new data assimilation framework can estimate temporally complete land-surface parameter profiles from MODIS time-series reflectance data even if some of the reflectance data are contaminated by residual cloud or are missing and that the retrieved LAI, FAPAR, and surface albedo values are physically consistent. The root mean square errors of the retrieved LAI, FAPAR, and surface albedo against ground measurements are 0.5791, 0.0453, and 0.0190, respectively.
U2 - 10.1109/tgrs.2014.2370071
DO - 10.1109/tgrs.2014.2370071
M3 - Journal article
SN - 0196-2892
VL - 53
SP - 3178
EP - 3197
JO - IEEE Transactions on Geoscience and Remote Sensing
JF - IEEE Transactions on Geoscience and Remote Sensing
IS - 6
ER -