A Discriminative Latent-Variable Model for Bilingual Lexicon Induction

Sebastian Ruder, Ryan Cotterell, Yova Radoslavova Kementchedjhieva, Anders Søgaard

    Abstract

    We introduce a novel discriminative latentvariablemodel for the task of bilingual lexiconinduction. Our model combines the bipartitematching dictionary prior of Haghighiet al. (2008) with a state-of-the-art embeddingbasedapproach. To train the model, we derivean efficient Viterbi EM algorithm. We provideempirical improvements on six language pairsunder two metrics and show that the prior theoreticallyand empirically helps to mitigate thehubness problem. We also demonstrate howprevious work may be viewed as a similarlyfashioned latent-variable model, albeit with adifferent prior.1
    OriginalsprogEngelsk
    TitelProceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
    ForlagAssociation for Computational Linguistics
    Publikationsdato2018
    Sider458–468
    StatusUdgivet - 2018
    Begivenhed2018 Conference on Empirical Methods in Natural Language Processing - Brussels, Belgien
    Varighed: 31 okt. 20184 nov. 2018

    Konference

    Konference2018 Conference on Empirical Methods in Natural Language Processing
    Land/OmrådeBelgien
    ByBrussels
    Periode31/10/201804/11/2018

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'A Discriminative Latent-Variable Model for Bilingual Lexicon Induction'. Sammen danner de et unikt fingeraftryk.

    Citationsformater