A classical propositional logic for reasoning about reversible logic circuits

Holger Bock Axelsen, Robert Glück, Robin Kaarsgaard

Abstract

We propose a syntactic representation of reversible logic circuits in their entirety, based on Feynman’s control interpretation of Toffoli’s reversible gate set. A pair of interacting proof calculi for reasoning about these circuits is presented, based on classical propositional logic and monoidal structure, and a natural order-theoretic structure is developed, demonstrated equivalent to Boolean algebras, and extended categorically to form a sound and complete semantics for this system. We show that all strong equivalences of reversible logic circuits are provable in the system, derive an equivalent equational theory, and describe its main applications in the verification of both reversible circuits and template-based reversible circuit rewriting systems.

OriginalsprogEngelsk
TitelLogic, Language, Information, and Computation : 23rd International Workshop, WoLLIC 2016, Puebla, Mexico, August 16-19th, 2016. Proceedings
RedaktørerJouko Väänänen, Åsa Hirvonen, Ruy de Queiroz
Antal sider16
ForlagSpringer
Publikationsdato2016
Sider52-67
ISBN (Trykt)978-3-662-52920-1
ISBN (Elektronisk)978-3-662-52921-8
DOI
StatusUdgivet - 2016
Begivenhed23rd International Workshop on Logic, Language, Information and Computation - Puebla, Mexico
Varighed: 16 aug. 201619 aug. 2016
Konferencens nummer: 23

Konference

Konference23rd International Workshop on Logic, Language, Information and Computation
Nummer23
Land/OmrådeMexico
ByPuebla
Periode16/08/201619/08/2016
NavnLecture notes in computer science
Vol/bind9803
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'A classical propositional logic for reasoning about reversible logic circuits'. Sammen danner de et unikt fingeraftryk.

Citationsformater