A characterization of saturated fusion systems over abelian 2-groups

Ellen Henke

5 Citationer (Scopus)

Abstract

Given a saturated fusion system FF over a 2-group S, we prove that S is abelian provided any element of is F-conjugate to an element of Z(S). This generalizes a Theorem of Camina–Herzog, leading to a significant simplification of its proof. More importantly, it follows that any 2-block B of a finite group has abelian defect groups if all B-subsections are major. Furthermore, every 2-block with a symmetric stable center has abelian defect groups.
OriginalsprogEngelsk
TidsskriftAdvances in Mathematics
Vol/bind127
Sider (fra-til)1-5
ISSN0001-8708
DOI
StatusUdgivet - 1 jun. 2014

Fingeraftryk

Dyk ned i forskningsemnerne om 'A characterization of saturated fusion systems over abelian 2-groups'. Sammen danner de et unikt fingeraftryk.

Citationsformater