Abstract
The Bifidobacterium genus harbours several health promoting members of the gut microbiota. Bifidobacteria display metabolic specialization by preferentially utilizing dietary or host-derived β-galactosides. This study investigates the biochemistry and structure of a glycoside hydrolase family 42 (GH42) β-galactosidase from the probiotic Bifidobacterium animalis subsp. lactisBl-04 (BlGal42A). BlGal42A displays a preference for undecorated β1-6 and β1-3 linked galactosides and populates a phylogenetic cluster with close bifidobacterial homologues implicated in the utilization of N-acetyl substituted β1-3 galactosides from human milk and mucin. A long loop containing an invariant tryptophan in GH42, proposed to bind substrate at subsite +1, is identified here as specificity signature within this clade of bifidobacterial enzymes. Galactose binding at the subsite -1 of the active site induced conformational changes resulting in an extra polar interaction and the ordering of a flexible loop that narrows the active site. The amino acid sequence of this loop provides an additional specificity signature within this GH42 clade. The phylogenetic relatedness of enzymes targeting β1-6 and β1-3 galactosides likely reflects structural differences between these substrates and β1-4 galactosides, containing an axial galactosidic bond. These data advance our molecular understanding of the evolution of sub-specificities that support metabolic specialization in the gut niche.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Molecular Microbiology |
Vol/bind | 94 |
Udgave nummer | 5 |
Sider (fra-til) | 1024-1040 |
Antal sider | 17 |
ISSN | 0950-382X |
DOI | |
Status | Udgivet - 1 dec. 2014 |