Abstract
We present a convolutional network that is equivariant to rigid body motions. The model uses scalar-, vector-, and tensor fields over 3D Euclidean space to represent data, and equivariant convolutions to map between such representations. These SE(3)-equivariant convolutions utilize kernels which are parameterized as a linear combination of a complete steerable kernel basis, which is derived analytically in this paper. We prove that equivariant convolutions are the most general equivariant linear maps between fields over R3. Our experimental results confirm the effectiveness of 3D Steerable CNNs for the problem of amino acid propensity prediction and protein structure classification, both of which have inherent SE(3) symmetry.
Originalsprog | Engelsk |
---|---|
Publikationsdato | 2018 |
Antal sider | 12 |
Status | Udgivet - 2018 |
Begivenhed | 32nd Annual Conference on Neural Information Processing Systems - Montreal, Montreal, Canada Varighed: 2 dec. 2018 → 8 dec. 2018 Konferencens nummer: 32 https://nips.cc/Conferences/2018 |
Konference
Konference | 32nd Annual Conference on Neural Information Processing Systems |
---|---|
Nummer | 32 |
Lokation | Montreal |
Land/Område | Canada |
By | Montreal |
Periode | 02/12/2018 → 08/12/2018 |
Internetadresse |