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The increasing depth of knowledge about cancer biology throughout the last decades, has underlined the importance of
not only genetic aberrations, but also epigenetic abnormalities in cancer cells. The extensive exploration of the cancer
epigenome has provided insights into key pathways involved in tumorigenesis, as well as has allowed the development
of novel epigenetic therapies. In this review, we will present the important role of epigenetic alterations in hematologi-
cal diseases, with special focus on epigenetically-based targeting of hematological malignancies.
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EPIGENETIC MARKS IN HEMATOLOGICAL

CANCERS

The term epigenetics was coined by Conrad Hal
Waddington in 1942, in an effort “to understand
how the genotypes of evolving organisms can
respond to the environment in a more co-ordinated
fashion” (1). The current definition of epigenetics
includes heritable changes in gene expression that
cannot be attributed to alterations in the DNA
sequence. Thus, if DNA is imagined as a book, epi-
genetic marks are page markers, set in different
pages of the book, defining which book pages are
being read at a cell at any given time.

The major marks that outline the epigenetic sta-
tus of a cell (epigenome) are DNA methylation and
chromatin structure, the latter defined by covalent
histone modifications and positioning of nucleo-
somes. DNA methylation in humans is exclusively
found on the cytosine of CpG dinucleotides
(cytosine followed by guanine) (2) and its presence
can either inhibit or facilitate gene transcription,
depending on the genomic location of the methy-
lated CpG sites; methylation on promoter areas is
typically associated with transcriptional silencing,
while methylated gene bodies are found in tran-
scriptionally active genes (3). Post-translational

modifications of histones include a variety of
chemical groups that are added on the protruding
histone tails, affecting the local structure of chro-
matin. In this review, we will mainly focus on his-
tone acetylation and histone methylation; however,
other modifications, such as phosphorylation,
sumoylation or ubiquitination of specific positions,
have been found to play an important role in the
epigenetic control of gene expression (4). Histone
lysine acetylation is a major contributor to main-
taining the structure of transcriptionally active
chromatin, since the addition of acetyl groups neu-
tralizes the positive charge of histones and subse-
quently their interaction with the negatively
charged DNA, allowing for a looser chromatin
form that permits the binding of transcription fac-
tors (5). Similarly, histone deacetylation results in a
tighter chromatin structure and transcriptional
inactivity. Histone methylation, on the other hand,
is a more dynamic and complex mark, with diverse
functions in different regulatory areas of the gen-
ome. For example, H3K4me3 is typically located in
active promoters while H3K27me3 in transcription-
ally inactive promoter areas, H3K4me1 is often
found in enhancer regions, and H3K36me3 is found
on the gene bodies of actively transcribed genes (6).

The epigenetic changes of cells are permanent
only on rare occasions (such as in tissue-specific
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inactivation), thus allowing for plasticity and adap-
tation of the epigenome in response to environmen-
tal changes. For that to be possible, an extensive
network of enzymes, known as epigenetic regula-
tors, can catalyze reactions that either add epige-
netic marks (“writers”), remove epigenetic marks
(“erasers”), or translate specific epigenetic marks
(“readers”). Activating or deactivating mutations
affecting at least one known epigenetic regulator
such as DNMT3A or TET2, or histone modifiers,
such as the MLL family or EZH2, are seen in
almost all hematological cancers (7–10). An over-
view of the most well-known mutated epigenetic
regulators involved in hematological malignancies is
given in Table 1.

The presence of epigenetic modifiers does not
only allow a finetuned intrinsic control of the epi-
genome, but also its therapeutic targeting with epi-
genetic drugs. Thus, in contrast to genetic
aberrations, which are typically harder to target,
epigenetic abnormalities can be specifically targeted
through therapeutic inhibition of a specific epige-
netic enzyme. A few of these epigenetic drugs, such
as 5-azacytidine (that targets DNA methylation) or
panobinostat (that targets histone acetylation), have
already been approved for some hematological can-
cers, but additional, novel epidrugs are currently
being tested in clinical trials. An overview of the
most important epigenetic therapies in hematology
will be presented in the next section.

APPROVED EPIGENETIC THERAPIES IN

HEMATOLOGICAL MALIGNANCIES

DNA-methyltransferase inhibitors

The cytidine analogs, 5-azacytidine and 5-aza-20-
deoxycytidine (or decitabine), first appeared in the
1970s as novel chemotherapeutic agents against
acute leukemia (11, 12). Early clinical trials showed
some anti-leukemic efficacy at relatively high doses

(varying from 150 to 750 mg/m2), however with
pronounced toxicity (12–14). In the meantime, a
groundbreaking discovery was made; a low dose of
5-azacytidine induced a reduction of DNA methyla-
tion in cell culture and led to the development of
cardiac muscle cells from embryonic mouse cells,
suggesting that it was more than a simple cytostatic
drug, since it could at lower, non-cytotoxic doses
induce severe phenotypic changes (15, 16). It was
later shown that 5-azacytidine exhibited this effect
by reducing the levels of DNA methylation, making
it an epigenetic drug (16). Thus, the administration
of 5-azacytidine in higher doses, in order to achieve
a direct cytotoxic effect, was abandoned and lower
dosing regimens aiming for an epigenetic effect
began to emerge (17). 5-azacytidine has since pro-
ven to be particularly efficient in patients with
myelodysplastic syndrome (MDS) in several clinical
trials, improving both the response rate and the
overall survival (18, 19). Its consequent approval by
the Food and Drug Administration (FDA) for the
treatment of patients with MDS marked the first
approval of an epigenetic drug used in cancer ther-
apy (20). Decitabine has also been tested in MDS
in several clinical trials, but was initially not
approved by the FDA due to lack of an overall
survival benefit; however is has now also been
approved by the FDA for the same indications as
5-azacytidine (21–23); however, in Europe, the
European Medicines Agency (EMA) has approved
both drugs but for different indications (24).

On a molecular level, DNA-methyltransferase
inhibitors (DNMTi) exhibit their mechanisms of
action by incorporating into the DNA of proliferat-
ing cells (decitabine is a deoxycytidine analog, so it
incorporates exclusively into the DNA, while 5-aza-
cytidine incorporates mainly into the RNA), but a
smaller fraction also gets metabolized to deoxycy-
tidine derivatives that get incorporated into the
DNA (11), where they covalently sequester
DNMT1, targeting it for proteasomal degradation

Table 1. An overview of the most important epigenetic regulators that are mutated or translocated in one or more
hematological malignancies

Name Epigenetic mark Function Disease

DNMT3A DNA methylation Writer MDS, AML
TET2 DNA methylation Eraser MDS, AML, B- and T-cell lymphomas
p300 Histone acetylation Writer B-cell lymphomas
CBP (CREBPP) Histone acetylation Writer MDS, AML, B-cell lymphomas
MLL1 (KMT2B) Histone methylation (H3K4) Writer AML, ALL, MLL
MLL2 (KMT2D) Histone methylation (H3K4) Writer Follicular lymphoma
EZH2 Histone methylation (H3K27) Writer MDS, B-cell lymphomas
UTX (KDM6A) Histone methylation (H3K27) Eraser ALL, multiple myeloma
MMSET Histone methylation (H3K36) Writer Multiple myeloma

MDS, myeloplastic dysplasia; AML, acute myeloblastic leukemia; CBP (CREBPP), CREB-binding protein (cAMP
response element-binding protein); ALL, acute lymphocytic leukemia; MLL, mixed lineage leukemia; EZH2, enhancer of
zeste homolog 2.
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(25, 26). Since DNMT1 is mainly responsible for
copying the methylation pattern to the newly syn-
thesized DNA strand during replication (27), the
original methylation pattern is successively lost dur-
ing the next cell divisions. It is still unclear how the
inhibition of DNMT1 could result in anti-tumor
effects, but there are different proposed models.
Traditionally, it has been thought that the main
effect of DNMTi is the promoter demethylation
and subsequent reactivation of aberrantly silenced
tumor suppressor genes (28, 29). However, this
effect has been shown to be both transient and not
as pronounced as it was originally believed (30–32).
In addition, apart from demethylating promoter
areas, DNMTi can also demethylate gene bodies,
resulting in the downregulation of cancer oncogenes
(33, 34). Other suggested mechanisms of DNMTi
involve activation of the immune system. It has for
example been shown that treatment with DNMTi
upregulates dormant antigens, such as cancer/testis
antigens, in malignant cells, which then become
immunogenic and trigger an anti-tumor immune
response (35, 36). Shortly after the demethylating
action of 5-azacytidine was unveiled, it was shown
that it was able to induce transcriptional activation
of endogenous retroviruses (ERVs) (37). This obser-
vation seemed to be of unknown significance, until
recently, when it was shown that DNMTi can also
activate and direct the immune system against
malignant cells, through a viral mimicry mecha-
nism, which involves the upregulation of endoge-
nous retroviral transcripts (38, 39). A summary of
the mechanisms of actions of DNMTi is given in
Fig. 1.

The clinical efficacy of DNMTi in lymphoid
malignancies and multiple myeloma (MM), is less
prominent than in acute myeloid leukemia (AML)
or MDS. Decitabine is currently being tested as
monotherapy in relapsed/refractory diffuse large B-
cell lymphoma (NCT03579082). A phase II, single-
arm study evaluating the effect of 5-azacytidine in
relapsed MM had to be terminated due to lack of
efficacy (NCT00412919). Thus, the role of DNMTi
as a monotherapy in lymphomas and myeloma is
disputable. However, there are studies showing that
DNMTi in combination with standard chemother-
apy could result in improved clinical response in an
lymphomas and/or resensitization to prior
chemotherapy, with further ongoing studies (40–
42). In myeloma, another pilot trial explored the
efficacy of the combination of lenalidomide (Len)
together with 5-azacytidine as an induction therapy,
followed by an autologous stem cell support in 17
patients with a newly diagnosed MM
(NCT01050790). Stem cell mobilization was not
affected by the treatment, with 16/17 (94.1%)

patients being able to mobilize stem cells and
continue with high-dose therapy (HDT) and
autologous stem cell transplantation (ASCT); how-
ever, the combination was relatively toxic, with
approximately half of the patients experiencing seri-
ous adverse effects. This could probably be due to
the unreduced dose of 5-azacytidine, which was
given at 75 mg/m2 for five days. Finally, another
study used low-dose 5-azacytidine in combination
with lenalidomide and low-dose dexamethasone
(Dex) in 40 patients with relapsed or refractory
MM (NCT01155583). 5-azacytidine was well toler-
ated up to 50 mg/m2 twice a week in combination
with Len-Dex, yielding a response rate of 22.9%,
but with grade 3/4 toxicities seen in 23/40 (58%)
patients. The study was initiated in 2010, with five
patients remaining in the study in 2015, suggesting
that a subset of patients might be more sensitive to
epigenetic therapy. Finally, it has been shown that
the immune-mediated effects of 5-azacytidine also
include upregulation of the PD1-PDL1 axis, which
might in fact inhibit the anti-tumor activity of the
immune system (43, 44). Based on these results, the
combination of 5-azacytidine with anti-PD1 or
anti-PDL1 antibodies is currently being tested, with
promising results (45, 46).

Apart from 5-azacytidine and decitabine, which
are FDA-approved DNMTi, there are additional
DNMTi that have shown promising results in pre-
clinical and early clinical studies. Oral azacytidine
(CC-486) has shown a favorable safety profile and
clinical activity in patients with MDS and chronic
myelomonocytic leukemia (CMML) (47). The posi-
tive results from oral azacytidine in lower-risk
MDS patients are currently being confirmed in the
phase III QUAZAR Lower-Risk MDS trial (AZA-
MDS-003) (48). Guadecitabine (SGI-110) is a new-
generation DNMTi, which is a dinucleotide that is
resistant to degradation by cytidine deaminase (49)
and has a much longer half-life and thus in vivo
exposure and with more pronounced immunomod-
ulatory effects than its predecessors (50). A phase I
study showed that guadecitabine administrates at
60 mg/m2 daily for 5 days subcutaneously was well-
tolerated and biologically active in patients with
MDS and AML (51). These results were later con-
firmed in a larger cohort of AML patients (52) and
guadecitabine is currently being tested in a large,
phase III trial (NCT02348489). The most recent
breakthrough in DNMTi is oral decitabine
(ASTX727), which is a combination of decitabine
with a cytidine deaminase inhibitor (cedazuridine or
E7727) to avoid the first-pass clearance and
increase its bioavailability after oral ingestion. Pre-
liminary results from a phase II study comparing
ASTX727 with intravenous decitabine in patients
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with MDS, presented in American Society of
Hematology (ASH) in 2017 (53), showed compara-
ble pharmacokinetics and pharmacodynamics,
safety profile, and response rates between the two
therapies, awaiting further confirmation in bigger
clinical trials.

Histone deacetylase inhibitors

Acetylation of histones is an essential epigenetic
mark, controlled by two different classes of
enzymes: histone acetyl-transferases (HATs) and
histone deacetylases (HDACs). HATs catalyze the
acetylation of histone lysine residues, which neutral-
izes their positive charge and reduces their interac-
tion with the negatively charged DNA strands, thus
resulting in a more “open” chromatin structure,
allowing transcriptional activity. HDACs belong to
a family of enzymes that remove acetyl groups
from histone lysine residues. So far, 18 HDACs
have been discovered and they are divided into four
distinct subclasses (54). Class I includes HDACs 1,
2, 3 and 8, with exclusively nuclear localization,
class II includes HDACs 4, 5, 6, 7, 9 and 10, with
both nuclear and cytoplasmic localization, class III

includes a family of proteins known as sirtuins and
finally class IV includes HDAC11, which is exclu-
sively located in the cytoplasm (55). Since HDACs
are also located in the cytoplasm, it is apparent that
they do not only interact with histones, but also
with other proteins. Indeed, it has been shown that
HDACs directly interact with key proteins that are
involved in carcinogenesis, such as p53, NF-kB,
c-MYC, and STAT3 (56–59). Not only are HDACs
non-specific to histones, but they also exhibit pleio-
tropic activity, being involved in a plethora of cellu-
lar functions, such as cell cycle regulation, stress
response, protein degradation, cytokine signaling,
and apoptosis (60). As such, HDAC inhibition
appeared to be a rational epigenetic therapy in can-
cer and several HDAC inhibitors soon made their
appearance as chemotherapeutic agents (61). An
overview of all the known histone deacetylase inhi-
bitors (HDACi) tested in clinical trials is given in
Table 2.

The anti-tumor activity of HDACi quickly
became apparent and preclinical data showed a
specifically increased efficacy of vorinostat
(suberoylanilide hydroxamic acid (SAHA)) and
romidepsin against T-cell lymphomas (62, 63).

Promoter Gene body

Promoter Gene body

Promoter Gene body

Promoter Gene body

5-Azacytidine

Gene body demethylation

Promoter demethylation

Transcriptional reactivation
of tumor suppressor genes

Transcriptional suppression 
of active oncogenes

Activation of the 
immune system and 
killing of tumor cells

Upregulation of cancer antigens

Upregulation of endogenous
retroviruses (ERVs) – ”viral mimicry”

dsRNA

Oncogenes and tumor 
suppressor gene related
mechanism of action

Immunological
mechanism of action

Fig. 1. The different mechanisms of actions of 5-azacytidine. Treatment with 5-azacytidine can reactivate silenced tumor
suppressor genes by demethylating their promoter area and/or reducing the expression of oncogenes by demethylating their
gene bodies. In addition, 5-azacytidine has some immunomodulatory effects and activates the immune system either by
overexpression of silenced cancer antigens or by activation of endogenous retroviruses (ERVs) in the cancer cells.
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These findings were further investigated by two
clinical trials, confirming the safety and clinical
activity of vorinostat in the treatment of cutaneous
T-cell lymphoma (CTCL) (64, 65). This led to the
approval of vorinostat for the treatment of CTCL,
making it the second epigenetic drug to be
approved for the treatment of a hematological
malignancy (66). Similarly, two other clinical trials
confimed the efficacy of romidepsin in CTCL and
romidepsin was also approved by the FDA for the
treatment of relapsed/refractory CTCL (67, 68). As
of today, according to clinicaltrials.gov, romidepsin
is currently being tested in approximately 50 stud-
ies, either as monotherapy or in combination with
other drugs, mainly for the treatment of T-cell
lymphomas.

Apart from T-cell lymphomas, numerous early
preclinical studies also showed that several HDACi
exhibit high anti-myeloma activity in vitro, even at
very low doses (69–73). However, early clinical
studies with HDACi as monotherapy for the treat-
ment of MM showed minimal efficacy, with only
panobinostat and vorinostat showing minimal
response rates (74–77). Nevertheless, HDACi were
not entirely abandoned for the treatment of mye-
loma, since additional preclinical studies showed
that HDACi possibly enhance the toxicity of other
agents, strengthening the rationale for a combinato-
rial approach, especially together with proteasome
inhibitors (78–81). This led to two large random-
ized, double-blinded, and placebo-controlled phase
III trials with vorinostat (VANTAGE-008 trial)
and panobinostat (PANORAMA 1 study) together
with bortezomib and dexamethasone, recruiting 637
and 768 patients, respectively (82, 83). Even though
the progression-free survival was significantly
higher for the arm including an HDACi in both

studies, the survival benefit was under a month
for vorinostat and approximately four months for
panobinostat. However, the data were enough for
the FDA to approve panobinostat for the treatment
of relapsed MM, together with bortezomib and
dexamethasone and panobinostat thus became the
last epigenetic drug that got approval by the FDA
for the treatment of a hematological cancer.

Despite the efficacy of HDACi in lymphomas
and myeloma, they seem to be clinically inactive in
myeloid malignancies. Panobinostat, as well as
vorinostat and belinostat have been tested in AML
as monotherapy, without any evidence of efficacy
(84–86). Even though this might as well be due to
biological causes specific to the disease, it could
also be due to the lack of specificity of HDACi and
their uncontrolled, off-target effects. Therefore, a
combinatorial approach with lower doses to
enhance other chemotherapeutic drugs, while at the
same time minimizing toxicity, might result in bet-
ter efficacy. Alternatively, the use of more specific
HDACi may also maximize the anti-tumor effect
with a more favorable toxicity profile. An interest-
ing example is HDAC6, a cytoplasmic HDAC (and
thus not a true epigenetic target) that plays a piv-
otal role in protein degradation especially of mis-
folded proteins, by facilitating the formation of the
aggresome, a secondary mechanism to proteasome
degradation (60). As a result, simultaneous inhibi-
tion of the proteasome and HDAC6 will lead to
the accumulation of misfolded proteins and induc-
tion of cell death, and synergy between bortezomib
and ACY-1215 (ricolinostat), a specific HDAC6-
inhibitor has been confirmed in a preclinical setting
(87). There are ongoing trials evaluating the efficacy
of ricolinostat in MM, in combination with borte-
zomib (NCT01323751), lenalidomide (NCT0158

Table 2. Overview of the most important histone deacetylase inhibitors inhibitors (HDACi), their inhibitory ability, and
their status in clinical trials involving hematological malignancies

Chemical structure Name Specificity Clinical status

Hydroxamic acid derivatives LBH589 (panobinostat) Classes I, II, and IV Approved (multiple myeloma)
SAHA (vorinostat) Classes I, II, and IV Approved (CTCL)
PXD-101 (belinostat) Classes I, II, and IV Phase II (B-cell and T-cell lymphomas)
ITF2357 (givinostat) Classes I, II, and IV Phase II (polycythemia vera)
4SC-201 (resminostat) Classes I, II, and IV Phase II (Hodgkin lymphoma)
LAQ824 (dacinostat) Classes I, II, and IV Phase I (solid tumors)
PCI24781 (abexinostat) Classes I and II Phase II (B-cell lymphomas)
ACY-1215 (ricolinostat) HDAC6 Phase II (multiple myeloma)
SB939 (pracinostat) Classes I, II, and IV Phase II (AML, myelofibrosis)

Benzamide derivatives MGCD0103 (mocetinostat) Class I Phase II (B-cell lymphomas)
MS-275 (entinostat) Class I Phase II (B-cell lymphomas)

Cyclic peptides Depsipeptide (romidepsin) Class I Approved (CTCL)
Short chain fatty acids Valproate Classes I and IIa Phase II (MDS, AML)

Butyrate Classes I and IIa Phase I (CLL, AML)

CTCL, cutaneous T-cell lymphoma; SAHA, suberoylanilide hydroxamic acid; AML, acute myeloblastic leukemia; MDS,
myelodysplastic syndrome; CLL, chronic lymphocytic leukemia.
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3283), and pomalidomide (NCT01997840), while it
is also being tested in B-cell lymphomas (NCT0209
1063 and NCT02787369).

HISTONE METHYLATION

Histone methylation can occur as mono-, di-, or
trimethylation on specific lysine residues on histone
tails. There are six different known residues that
can be methylated on histones 3 and 4: H3K4,
H3K9, H3K27, H3K36, H3K79, and H4K20 (88).
Since several histone methyltransferases (KMTs)
and histone demethylases (KDMs) are involved in
the pathogenesis of hematological malignancies (see
Table 1), they are of special interest as epigenetic
targets. The last decade has witnessed the develop-
ment of a plethora of novel epigenetic drugs target-
ing specific KMTs or KDMs that have been or are
currently being tested in clinical trials. In this
review, we will mainly focus on two different well-
characterized approaches: the targeting of enhancer
of zeste homolog 2 (EZH2) and the targeting of the
mixed lineage leukemia (MLL) family of proteins
and/or disruptor of telomeric silencing 1-like
(DOT1L).

EZH2

Enhancer of zeste homolog 2 is the enzymatically
active part of a protein complex known as poly-
comb repressive complex 2 (PRC2) and catalyzes
the formation of H3K27me3 (89). PRC2-mediated
gene silencing is a major, DNA methylation-inde-
pendent mechanism of transcriptional repression,
often utilized by cancer cells (90). Mutations of
EZH2 have been found in both myeloid and lym-
phoid malignancies, albeit with opposing effects.
EZH2 has been shown to be mutated in myelodys-
plastic (MDS) syndromes with loss-of-function
mutations (91), while mutations of EZH2 in follic-
ular lymphoma and germinal-center type of diffuse
large B-cell lymphoma result in increased
enzymatic activity, allowing therapeutic targeting
(92, 93). In addition, mutations of UTX (or
KMD6A), which has an opposing action to EZH2,
catalyzing the demethylation of H3K27me3, have
also been described in some hematological
malignancies, such as acute lymphoblastic leuke-
mia (94) or myeloma (95, 96), possibly leading to
increased responsiveness to therapeutic inhibition
of EZH2.

Since the discovery of the importance of EZH2
for the pathogenesis of lymphoid malignancies,
numerous small molecules that inhibit EZH2 have
emerged (97, 98). GSK-126 was one of the first

EZH2 inhibitors to be tested in a clinical trial,
recruiting patients with lymphoid malignancies and
myeloma (NCT02082977). However, GSK-126 has
the disadvantage of intravenous administration
and potential off-target effects, as the study had to
be terminated due to insufficient evidence of clini-
cal activity, even after the maximal dose and
schedule were attained. Tazemetostat (EPZ-6438)
is another, orally administered EZH2 inhibitor
with promising results in clinical trials. Early
results from a phase I/II trial with tazemetostat
alone or combined with prednisone in patients
with B-cell lymphomas showed clinical activity in
both wild-type and EZH2-mutated patients, while
at the same time exhibiting minimal toxicity
(NCT01897571). The activity of tazemetostat is
also being investigated exclusively in patients with
B-cell lymphomas bearing an EZH2 mutation
(NCT03456726). Following these promising results
in a relapsed setting, tazemetostat is now being
tested in combination with R-CHOP (called “Epi-
RCHOP) in patients with newly diagnosed diffuse
large B-cell lymphoma (NCT02889523). However,
this study is currently suspended due to the devel-
opment of a secondary T-cell lymphoma in a pedi-
atric patient receiving tazemetostat in a different
trial. Other novel EZH2 inhibitors such as CPI-
1205 or SHR2554, are currently being tested in
phase I studies including patients with relapsed/re-
fractory lymphoid malignancies (NCT02395601,
NCT03603951). Thus, the potential of EZH2 inhi-
bition in the treatment of lymphoid malignancies
remains unknown but is currently thoroughly
investigated.

The MLL family and DOT1L

The mixed lineage leukemia (MLL) family of
proteins includes five different members that all
methylate H3K4, thus regulating the active gene
transcription (99). In humans, the MLL1 (also
known as ALL1 or KMT2A) gene is frequently
involved in chromosomal translocations in acute
leukemias that can be both of lymphoid (ALL) and
myeloid (AML) lineages, as well as biphenotypic
leukemias (mixed lineage leukemias – MLL), offer-
ing a particularly poor prognosis in infant ALL,
but not in de novo AML in adults (100, 101). The
most common translocations involving the MLL1
gene are t(4,11)(q21;q23) or MLL–AF4; t(9;11)(p22;
q23) or MLL–AF9; t(11;19)(q23;p13.3) or MLL–
ENL; t(10;11)(p12;q23) or MLL–AF10; and t(6;11)
(q27;q23) or MLL–AF6, all resulting in chimeric
fusion proteins (102). Interestingly, the aforemen-
tioned fusion partners for MLL have been shown
to interact directly with DOT1L, which is currently
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the only known H3K79 methyltransferase (103)
and it seems that the oncogenic activity of MLL-
fusion proteins is based on the recruitment of
DOT1L and methylation of H3K79 (104–106)
(Fig. 2). In fact, DOT1L seems to play a central
role in the genome-wide transcriptional changes
caused by the chimeric MLLs, as the inhibition of
DOT1L has exhibited strong anti-leukemic activity
in preclinical models of MLL- translocated leuke-
mias (107–109).

Since there are to date no known direct inhibi-
tors of MLL1 or its fusion alternatives in MLL-
translocated leukemias, DOT1L seems to be a very
promising target for the treatment of this specific
subtype of leukemias. To this day, only a single
inhibitor of DOT1L, pinometostat (EPZ-5676), has
been tested in two different clinical trials. In the
first trial (NCT02141828), pinometostat was tested
in pediatric patients with ALL bearing MLL
translocations. Preliminary data from this study
(presented at ASH in 2016) showed that a dose of
70 mg/m2 given as a continuous intravenous infu-
sion daily until disease progression had an accept-
able safety profile and led to transient reductions in
peripheral or bone marrow blasts in approximately
40% of patients, however with no objective clinical
responses (110). Another study tested pinometostat
in adults with relapsed/refractory leukemias (AML,

ALL, or MLL) with MLL translocations
(NCT01684150). Again, preliminary results from
this study presented at ASH in 2015 showed a
favorable toxicity profile and a clinical response in
6 out of the 49 patients recruited (111). It will be
interesting to investigate not only the relationship
of clinical response with pharmacodynamics and
pharmacokinetics of pinometostat, but also its clini-
cal efficacy in MLL-translocated leukemias when
given in combination with other chemotherapeutic
agents.

PERSPECTIVES

Epigenetic therapy in hematological malignancies is
a rapidly advancing field with a massive potential.
With already four approved epigenetic therapies
and a plethora of novel drugs under development,
it will be interesting to observe the evolution of
epitherapeutics in hematology. An interesting exam-
ple of novel epidrugs is a class of drugs that target
the ‘readers’ of epigenetic marks, some of which are
currently being tested in clinical trials. For example,
JQ1, an inhibitor of the bromodomain protein
BRD4, has exhibited high anti-myeloma activity
in vitro, by downregulating genes that are critical
for the development of multiple myeloma (MM),

Wild-type MLL

MLL translocation

Constitutively active gene expression

MLL1

MLL1

Fusion
partner

DOT1L

Transiently active gene expression
H3K4me3

H3K79me3

Fig. 2. MLL1 is a member of the mixed lineage leukemia (MLL) family, the members of which are H3K4 methyltrans-
ferases. In the case of an MLL translocation, a chimeric MLL protein is formed, with a fusion partner such as AF9 or
AF10, which directly binds the H3K79 methyltransferase disruptor of telomeric silencing 1-like (DOT1L), allowing for a
much more potent and constitutive activation of gene expression.
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including MYC (112). MYC is one of the key genes
in the pathogenesis of MM, is found upregulated in
up to 50% of cases, and has been associated with
the transition from monoclonal gammopathy of
undetermined significance (MGUS) to symptomatic
MM, as well as late disease progression (113). JQ1
selectively inhibits the binding of BRD4 on super-
enhancers, thus directly inhibiting the MYC tran-
scription with depletion of the c-Myc oncoprotein,
as well as selective downregulation of the c-Myc
transcriptional program (112, 114). Apart from
myeloma, JQ1 has also shown activity in diffuse
large B-cell lymphoma (115) and high-risk myeloid
leukemia (116). So far, no MYC-specific inhibitors
have been developed, and given the fundamental
role of MYC upregulation in MM but also in other
tumors, JQ1 might thus be one of the many impor-
tant future epigenetically based cancer therapies.

Finally, it is extremely important to precisely
characterize the mechanisms of action of epigenetic
drugs, in order to increase efficacy while at the
same time minimizing side effects or off-target
effects. Based on most of the clinical trials,
monotherapy with an epigenetic drug is rarely suffi-
cient to achieve disease control; however, it seems
that epigenetic therapy might be able to enhance
the cytotoxic activity of other chemotherapeutic
agents (79, 81, 117, 118). Even more interestingly,
epigenetic therapy has been shown to restore sensi-
tivity to chemotherapy in both myeloid (119) and
lymphoid cancers (40–42, 120), as well as myeloma
(121, 122). Lastly, there might also be synergy
between different epigenetic therapies. Recent data
have shown that the upregulation of ERVs follow-
ing decitabine treatment is even more pronounced
when G9a, a H3K9 methyltransferase, is concur-
rently inhibited and the potential of the combina-
tion of decitabine and a G9a inhibitor requires
further investigation (123). In addition, it has been
shown that the inhibition of either DNA methyl-
transferases (DNMTs) or EZH2 might enhance the
cytotoxicity of panobinostat in different hematolog-
ical malignancies (124–126). Thus, a more targeted
approach, where epigenetic therapy is part of a
multidrug regime, can be used to employ synergy
and maximize the efficacy of standard chemother-
apy, or epigenetic therapy can be given prior to
chemotherapy, to “prime” the epigenome and even-
tually (re)sensitize the malignant cells to a given
therapy. Future preclinical and clinical studies are
thus needed to evaluate the best possible use of epi-
drugs in cancer.

KD and KG are both supported by the van Andel
Research Institute, Stand Up to Cancer, Epigenetics
Dream Team.
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