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Abstract: The complexity and volatility of power system operation increase when larger parts of the power production is based
on distributed and non-controllable renewable energy sources. Ensuring stable and secure operation becomes more difficult in
these modern power systems. For security assessment, the results of traditional offline simulations may become obsolete prior
to the completion of the assessment. In contrast, real-time stability and security assessment aims at online computation, and it
is therefore dependent on very fast computation of properties of the grid operating state. The study develops the reduce–factor–
solve approach to real-time computation of two key components in real-time assessment methods, network reduction, and
calculation of Thevenin impedances. The aim is to allow online stability assessment for very complex networks. The theoretical
foundation behind the reduce–factor–solve approach is described together with the ability to handle both algorithms in a
common framework. By exploiting parallelisation of the reduce and solve steps in combination with fast matrix factorisation,
Thevenin impedances and reduced networks are computed much faster than previous approaches. The reduce–factor–solve
algorithm is evaluated on power grids of varying complexity to show that Thevenin impedance computation and network
reduction for complex power systems can be performed on a milliseconds time scale.

1௑Introduction
Although traditional power systems are characterised by
centralised controllable energy production, efforts on
decarbonising the power system often lead to the distributed power
production based on non-controllable renewable energy sources.
This general shift from low numbers of high-power units to high
numbers of low-power units with fluctuating production creates
new challenges for stable and secure operation.

In traditional power systems, stability and security could be
assessed offline and sensitivities to various contingencies
established by running time-consuming simulations. Multiple
factors of the future power system can challenge this approach: the
complexity of a power grid is greater when the level of
decentralisation is high. This results in higher computational
requirements and thus longer runtime for simulations. The power
system should still be able to operate under rapidly changing
conditions, e.g. when including weather dependent energy sources.
Large fluctuations of the system operating point can be common,
and in combination these factors may make the results of
conventional offline stability assessment obsolete prior to the
completion of time domain simulation. From a stability assessment
point of view, the answer to these complications lies in faster
assessment methods [1]. Speed-up of assessment algorithms can be
obtained by developing new assessment methods or by reducing
the execution time of critical elements of already existing methods.
However, no matter which strategy is chosen, fast algorithms for
extracting properties of the grid operating state are needed.

This paper presents a general approach to fast computation of
two critical parts of important assessment methods: calculating the
system Thevenin impedances and reducing the network to the
generator or voltage controlled nodes (vcs) only. The reduce–
factor–solve approach allows online computation of both
operations in a common framework. As several approaches to real-
time stability assessment require knowledge of Thevenin
impedances and properties of the reduced network, the developed
algorithms make the use of these approaches feasible for complex
power systems at smaller time resolutions. As we validate
experimentally, the presented approach allows fast Thevenin

impedance computation on networks with close to 8000 buses on a
millisecond scale. The paper shows how the Thevenin impedance
computation constitute a particular case of network reduction, and
this property is used to cover both operations with the reduce–
factor–solve approach. The approach as illustrated in Fig. 1 is
identified as a mix of left-looking and frontal matrix factorisation
algorithms, and the division between serial and highly parallel
parts is used to reduce the runtime of both Thevenin impedance
computations and network reduction. 

The work extends the conference paper [2] by including full
network reduction and node-elimination as a core part of the
algorithm resulting in the reduce–factor–solve framework. While
node elimination is generally non-parallelizable, we describe here
how fine-grained parallelisation in the elimination procedure can
be exploited, and how graphics processing units (GPUs) can be
employed to speed-up part of the network reduction task.

The paper starts with background information on real-time
stability assessment and computational issues before progressing to
discussing Thevenin impedances and previous algorithms. It is
shown how the voltage controlled part of the network gives rise to
a dense submatrix, and this is used to develop the reduce–factor–
solve approach. The role of node elimination is discussed before
covering full network reduction. In Section 8, parallelisation and
implementation details are discussed, and the performance and
validity of the reduce–factor–solve approach is evaluated in
Section 9. The paper ends with description of future work and
concluding remarks.

2௑Background
Thevenin impedance calculations constitute a major component of
important stability assessment methods. For example, in [3], a
method is proposed for real-time assessment of rotor angle stability
which exploits analytically derived expressions for critical stability
boundaries [4]. The Thevenin impedance seen from each node of
constant voltage is used to determine the distance to a stability
boundary of each synchronous machine, and the voltage stability
monitoring is based on local measurements and Thevenin
impedances in [5–8]. Thevenin impedance based assessment were
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proposed in [9–11], and approaches for real-time static security
assessment exploiting coupled Thevenin equivalents are reported in
[12–14]. Online stability assessment with the above methods is
dependent on fast Thevenin impedance computation, and the
algorithm presented here therefore addresses a real issue: without
fast algorithms, online stability assessment will be limited in the
time resolution and in the size of the network concerned. To the
best of our knowledge, no method that focuses on computational
aspects of Thevenin impedance computation is described in the
literature besides [2, 3].

Direct methods for transient stability using Lyaponov functions
[15] compare the energy of the grid operating point against the
value of the system in critical states. Each generator contributes to
the energy and the evaluation of the energy function is therefore
dependent on the transfer conductances between all pairs of
generators [16]. The transfer conductances constitute the elements
of the admittance matrix of the network reduced to the generator
nodes only. The fast network reduction method developed here will
therefore allow fast evaluation of energy functions with the
Lyaponov method. Similarly, assessment methods based on the
extended equal area criterion [17] rely on the admittance matrix of
the reduced network for calculation of the acceleration criterion
and identification of critical machines. See [18] for mathematical
aspects of network reduction and [19] for step-by-step matrix
reduction closely related to node elimination as discussed here.

To minimize the execution time of computations involving
power grids, sparsity of the network matrices is often exploited.
Sparse algorithms are, however, often hard to parallelize, and a
trade-off between exploiting sparsity and parallelisation is often
necessary. Here, the high level of parallelism of the solve-step in
the developed network reduction algorithm allows for fast
evaluation of the energy in Lyaponovs direct method. In contrast,
when solutions to linear systems are needed, e.g. for implicit time
simulation with the Lyaponov direct method, the larger but more

sparse non-reduced system should be used [20]. Additional typical
network computations involve sparse matrix factorisation [21] and
relaxation methods [22]. See also [23] for comparison of
factorisation and relaxation methods.

3௑Power system and representation
An arbitrary power grid consisting of N nodes (buses) is considered
throughout the paper. In the grid, the steady state voltage
magnitude at M ≤ N nodes is kept constant by means of voltage
control. These M nodes include the nodes representing
synchronous generators’ internal voltage (behind Xd) if they are
manually excited. Let Y denotes the system admittance matrix, the
system node voltage equation is I = YV . The M vcs and the N − M

nodes of non-controlled voltage (ncs) can be ordered so that the ncs
and vcs are numbered by indices 1, …, N − M and
N − M + 1, …, N, respectively. The system admittance matrix then
takes the form

Y =
Ync Ylink

Ylink
T

Yvc

(1)

where Ync denotes the admittance matrix of only the nc part of the
system, Yvc denotes the admittance matrix of the vc part, and Ylink

encodes the links between the nc and vc parts of the network.

4௑Transfer admittances and Thevenin
impedances
This section describes two mathematical formulations of the
system Thevenin impedances as seen from the voltage controlled
vc nodes. For each vc node k, the aim is to compute the Thevenin
impedance for the node, i.e. the impedance seen from node k when
all vc nodes besides node k are shorted. This situation can be
modeled by removing all vc nodes besides k from the system, and
the Thevenin impedance Zth, k can then be obtained as the last
diagonal element of inverse of the resulting admittance matrix.

4.1 Thevenin impedances from LU-factorisation

It is shown in [24] that the Thevenin impedances Zth, k can be
obtained from an LU-factorisation of the system admittance matrix.
The LU-factorisation [25] splits a matrix into a product of a lower
diagonal and an upper diagonal matrix, e.g. the admittance matrix
Y is factorised into the product Y = LU. Using the factorisation,
the impedance Zth, k can be found by the formula

Zth, k
−1

= Y(k, k) − L
^

k ⋅ U
^

⋅ k (2)

with the last term being the inner product between the entries
1, …, N − M of the kth row of the matrix L and of the kth column
of the matrix U.

4.2 Schur complement formulation

The Thevenin impedances can equivalently be expressed in terms
of the Schur complement of the voltage controlled part of the
admittance matrix. With system loads represented by their
admittance values, no current enters the ncs, and the network
equation can be stated as

0

Ivc

=
Ync Ylink

Ylink
T

Yvc

Vnc

Vvc

. (3)

Using the Schur complement [18, 26]

S = Yvc − Ylink
T

Ync
−1

Ylink (4)

of Yvc, the vc-part of the solution to (3) can be obtained from the
reduced system Ivc = SVvc. Looking only at the diagonal elements

Fig. 1௒ Reduce–factor–solve approach, see also Algorithm 1. The full
system admittance matrix Y is partitioned into the voltage controlled Yvc,
non-voltage controlled Ync, and link Ylink parts. The algorithm performs a
fill-in limiting reduction/node elimination followed by a factorisation of
Ync. Computation of Thevenin impedances (left) or fully reduced network
(right) follows after a forward solve and inner product computations. The
grayed boxes represent fully parallelizable parts of the algorithm, while the
white boxes are primarily serial allowing only fine-grained parallelisation
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S(d, d), d = 1, …, M, the right-hand side of (2) equals S(d, d) with
k = d + N − M. The Thevenin impedances are therefore the
element-wise inverses of the diagonal of the Schur complement S.

5௑Approaches to computing Thevenin
impedances
In [24], LU-factorisation of the full system admittance matrix Y

and (2) is used for computing Thevenin impedances. The benefit of
using this approach is that only one factorisation of the full
admittance matrix is needed in order to compute Zth, k for all vc
nodes. This method is analysed below in order to show how a
faster approach can be developed, and the method is used as basis
for the comparisons in Section 9.

5.1 Complexity and fill-in

Due to the very high sparsity of network matrices, LU-factorisation
is in general a very efficient procedure. Though the worst case
performance scales cubicly in the number of nodes, i.e.
performance is O(N

3
) in worst case, the complexity will be linear

in most practical cases, see [23]. A key factor in achieving this
complexity is minimising the number of fill-ins, non-zero elements
of the factors L and U that are not present in Y. The number of fill-
ins is highly dependent on the ordering of the matrix Y. For

network matrices, ordering algorithms like approximated minimum
degree (AMD, [27]) and variants ensure a very low degree of fill-
in. The number of both non-zeros in Y and additional fill-ins are in
practice close to linearly correlated with N, implying that the
factorisation will be close to linear in complexity.

In (1), an ordering with the ncs occurring with lower indices
than the vcs is used. This ordering is required for (2) that allows us
to extract the Thevenin impedances. To adhere to this indexing
convention, [24] applies AMD ordering to the submatrices Ync and
Yvc individually before combining them to obtain the full matrix Y
as in (1). The result of this partial ordering strategy is that the
upper left part of the factors L, U becomes adequately sparse but
the lower right part of the factors contains a very large number of
fill-ins. This problem that slows down the algorithm considerably
is illustrated in Fig. 2, and a theoretical explanation of the
excessive fill-in is given below. 

5.2 Sparse factorisation and dense Schur complement

The Schur complement (4) can also be obtained by successively
eliminating nodes from the system and creating reduced admittance
matrices. If the kth node is to be eliminated from an N node
network as illustrated in Fig. 3, the new (N − 1) × (N − 1)

admittance matrix is given by the formula

Y(i, j)
new

= Y(i, j) −
Y(i, k)Y(k, j)

Y(k, k)

, (5)

for i, j ≠ k. The Schur complement S of the voltage controlled part
is the matrix resulting from eliminating all ncs, see, e.g. [18]. 

Successive node elimination using the update formula (5)
produces an equivalent network matrix that has fewer nodes;
however, branches are added to the network, and the resulting
network is therefore potentially less sparse. In the completely
reduced network consisting of all vc nodes, the majority of nodes
will be connected by branches. The Schur complement S is
therefore a dense matrix.

In [28, 29], it is observed that if a matrix with the block
structure in (1) is LU-factored, the product of the lower right
blocks Lvc, Uvc of the factors L, U corresponding to the vc part of
the network gives the Schur complement of the voltage controlled
part of the network directly, i.e. S = LvcUvc. This provides a way to
compute and factor S but it also tells us why the large number of
fill-ins are observed when computing Thevenin impedances with
the method of [24] where the full matrix Y is factorised: because S
is dense, the factors Lvc and Uvc will in general not be sparse. The
product of sparse matrices can be dense, however, if, e.g. the node
degree of the networks represented by the factors is limited, the
product will be sparse. Lvc, Uvc are precisely the lower right blocks
of the factors L, U where the excessive number of fill-ins occur.
Indeed, any fixed bound on the maximum node degree in both Lvc

and Uvc would imply that the number of non-zeros in S would grow
linearly with the number of vcs, i.e. M. Since S is dense, the
number of non-zeros grow quadratically, nnz(S) ≃ M

2, and no such
bound can therefore exist.

6௑Reduce–factor–solve Thevenin impedances
The factorisation of the dense Schur complement completely
dominates the runtime when computing Thevenin impedances
using the above outlined method. Therefore, a great speed-up of
the computation can be achieved if the factorisation of the full
admittance matrix Y and the excessive fill-in in the nc-part of the
factors can be avoided. The reduce–factor–solve approach achieves
exactly that.

The name of the method relates to its composition into three
individual steps. The derivation below couples a variant of (2) with
the structure of left-looking LU-factorisation algorithms. For each
vc node k, let Yk denote the (N − M + 1) × (N − M + 1) admittance
matrix of the system with all vc nodes but node k removed. A close
variant of (2) for computing Zth, k

−1  uses the matrices Yk instead of Y.
A factorisation Yk = LkUk gives the relation

Fig. 2௒ Sparsity patterns of the LU-factorisation of the full admittance
matrix Y. The excessive fill-in visible in the lower right vc-part limits the
performance of the algorithm. In contrast, factorisation of the nc-submatrix
only with the reduce–factor–solve approach can be done with very limited
fill-in and consequently very fast factorisation. The reduce–factor–solve
algorithm reduces both the dimension of the matrix to be factored (in this
case from 7917 × 7917 to 960 ×960) and the number of non-zeros in the
factors (from 1,549,093 to 10,174)

 

Fig. 3௒ Elimination of one of two interior nodes in a six node network. The
node to be eliminated has degree three and with three new branches added
to the reduced network, the total number of branches is kept constant. This
preserves the sparsity. Elimination of nodes with higher degree will result
in an increased number of branches reducing sparsity
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Zth, k
−1

= Y(k, k) − L
^

k, (N − M + 1) ⋅ U
^

k, ⋅ (N − M + 1) (6)

where the notation in the rightmost term denotes the inner product
between entries 1, …, N − M of the last row of Lk and of the
rightmost column of Uk. The advantage of using this formula is
that the row L

^

k, (N − M + 1) ⋅  and the column U
^

k, ⋅ (N − M + 1) can be
obtained from a factorisation Ync = LncUnc of the nc-part of Y only.

Consider now iterations of left-looking LU-factorisation
algorithms [25]. With this class of algorithms, the N − M + 1

columns in a factorisation Yk = LkUk are computed iteratively from
left to right, i.e. starting with column 1 and ending with column
N − M + 1. At each step j, the upper left ( j − 1)-block of Lk is used
to compute the first j − 1 entries of the jth column of Uk. In
particular, computation of N − M entries of the rightmost column
uses only the upper left (N − M)-block of Lk, i.e. the block
representing the ncs. Writing this last step of the algorithm
explicitly, the first N − M entries of column N − M + 1 of Uk

satisfy the equation

LncU
^

k, ⋅ (N − M + 1) = Y
^

link, ⋅ k (7)

where Y
^

link, ⋅ k denotes the first N − M entries of the column
Ylink, ⋅ , k. The column vector U

^

k, ⋅ (N − M + 1) is therefore computed with
a triangular forward solve using the factorisation of Ync only.
Similarly, the first N − M entries of row N − M + 1 of Lk can be
obtained from the equation

Unc
T

L
^

k, (N − M + 1) ⋅

T
= Y

^

link, k ⋅

T (8)

again using only the factorisation of Ync. Thus, using (6), we get
Zth, k from two forward solutions using the factorisation of Ync.

With the above computations, all matrices and operations
involved are sparse and the fill-in producing factorisation of the
full admittance matrix Y is avoided. In addition, the triangular
matrices used for the forward solves are not dependent on k, and
the factorisation of Ync must therefore be done only once. Due to
the sparsity, the forward solves are each computationally
lightweight, and they can in addition be computed completely in
parallel. In the sequel, the factorisation of Ync is denoted the
factorisation step and the forward solutions (7), (8) combined for
the forward solve step. Though Section 9 will show that the
forward solve step can dominate the runtime, the completely
parallel nature of the loop over all vcs makes speeding up this step
straight forward by splitting the computation of several compute
cores. In contrast, the factorisation step is hard to parallelize and
therefore in reality the limiting factor of the algorithm. This step is
analysed below.

6.1 Node elimination and factorisation speed

The factorisation step of Algorithm 1 consist of the LU-
factorisation of Ync. We use the KLU solver [21] that is particularly
optimised for matrices with sparsity structure equivalent to power
network matrices, and it is therefore inherently difficult to improve
the factorisation speed. Nevertheless, it turns out that the execution
time of the factorisation step can be reduced by using that
factorisation of the entire submatrix Ync is not required in order to
evaluate (6). Instead, node elimination prior to factorisation can be
performed to produce an equivalent but smaller matrix. This part of
the reduce–factor–solve algorithm is denoted the reduction step.
 

Algorithm 1: Reduce-factor-solve algorithm
Ync ← Fast node elimination Ync (reduction)
Lnc, Unc ← factorisation of Ync (factorisation)
for k = N − M + 1 → N do for each vc in parallel
 U

^

k, ⋅ (N − M + 1) ← solve(Lnc, Y
^

link, ⋅ k) (forward solve)

 L
^

k, (N − M + 1) ⋅

T
← solve(Unc

T , Y^

link, k ⋅

T
)

end for

for k = N − M + 1 → N do For Thevenin impedances
 S(k − N + M, k − N + M) ←    Y(k, k) − L

^

k, (N − M + 1) ⋅ U
^

k, ⋅ (N − M + 1)

 Zth, k ← S(k − N + M, k − N + M)

−1  Thevenin imp. node kend for
for k, l = N − M + 1 → N do For network reduction
 S(k − N + M, l − N + M) ←(GPU)
    Y(k, l) − L

^

k, (N − M + 1) ⋅ U
^

l, ⋅ (N − M + 1)end for
Node elimination in the reduction-step can reduce the execution

time of the factorisation step but careful consideration must be
made with respect to the amount of fill–in generated by the
elimination. Due to the efficiency of KLU, the reduction algorithm
can be quite relaxed in removing only a relatively limited number
of nodes. This is done with a simple fill-in reducing strategy: The
algorithm scans through the nc nodes removing a node only if it is
connected to <4 other nc nodes and if the fill introduced in the link
matrix Ylink is limited. Since removing nodes of degree 3 or less
does not introduce fill-ins, this strategy ensures that the number of
non-zeros in Ync does not increase during the process, confer
Fig. 3. The number of non-zeros in Ylink will in general increase but
the number of added fill-ins is controlled by a fixed limit.
Additional methods for fill-in limiting eliminating can be found in
the literature on large resistor networks, e.g. [30].

It will be shown in Section 9 that node elimination reduces the
computational effort of the factorisation step by a factor of 2–3.
Please note that this is a reduction of serial part of the algorithm
that could not be obtained simply by adding more compute cores
running in parallel.

The reduce–factor–solve algorithm is listed in Algorithm 1.
Implementation details and pivoting issues are discussed in Section
8.

7௑Fast network reduction
As the Thevenin impedances comprise the element-wise inverses
of the diagonal of the Schur complement, the reduce–factor–solve
approach can be regarded a fast algorithm for computing the
diagonal of the Schur complement. Since the entire Schur
complement is needed in transient stability applications, e.g. for
computing the energy in the Lyaponov direct method and for
identifying critical machines with the equal area criterion, the
reduce–factor–solve approach will here be generalised to
computing the entire Schur complement of the voltage controlled
part of the network. As the Schur complement corresponds to node
elimination, this operation is equivalent to eliminating all ncs from
the network. The focus here is on reducing the execution time
needed to perform this operation.

The Schur complement (4) can be obtained by computing the
entire matrix instead of just the diagonal elements, i.e. by
extending (6) to compute

Y(k, l) − L
^

k, (N − M + 1) ⋅ U
^

l, ⋅ (N − M + 1)

for all pairs l, k = N − M + 1, …, N. This requires evaluation of M2

inner products between sparse vectors instead of the M inner
products needed for the Thevenin impedance computation.
However, no additional evaluations in the forward solve step are
needed. The performance of the algorithm is therefore dependent
on the speed of evaluating the inner products.

Network reduction is often viewed as an iterative process of
node elimination, and successive node elimination can be
considered the most straight forward algorithm for network
reduction. In order to eliminate all ncs, the update formula (5) must
be applied N − M times. Since each update step potentially updates
the entire remaining matrix, this approach has complexity
O((N − M)N

2
). For the first elimination steps, the matrix is very

sparse and each update is in practice much faster than than the
worst case O(N

2
) bound. As more nodes are eliminated, the number

of added branches may grow quickly and reduce the sparsity of the
matrix. For the last nodes to be eliminated, the matrix becomes
dense. This fact limits the performance.

In contrast to the iterative process of node elimination is
evaluating the Schur complement directly from (4) using matrix
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algebra. The inversion Ync
−1 will then in practice be carried out using

an LU-factorisation of the nc-part of the network. This approach is
therefore equivalent to running Algorithm 1 with computations of
all M2 sparse inner products but without the reduction step.

With the terminology used in the LU-factorisation literature,
successive node elimination corresponds to a partial factorisation
of the matrix using a frontal factorisation algorithm with M − N

rank-1 update steps. Similarly, direct evaluation of (4) corresponds
to a frontal factorisation with one step and a sparse factorisation of
the frontal matrix. The reduce–factor–solve approach can therefore
be viewed as a hybrid between these algorithms that performs
rank-1 updates until the sparsity starts decreasing followed by
sparse LU-factorisation for the remaining vc nodes.

8௑Implementation and parallelisation
The execution time of Algorithm 1 is highly dependent on the
parallelisation over multiple CPU cores or on highly parallel
GPUs. This section provides details on the possibilities for
parallelisation and the choices made in the actual implementation.
A prototype implementation of the algorithm for computing both
Thevenin impedances and for performing network reduction is
available online [see https://bitbucket.org/stefansommer/
networkred].

8.1 Reduction step

In the reduction step, nc-nodes that are connected to three or fewer
additional nc-nodes are successively removed. The elimination of
one node must be finished before its neighboring nodes can be
removed. Performing node elimination in parallel will therefore
require a dependency graph between the parallel parts and
synchronisation between parallel threads. As each individual node
elimination can be performed very fast, the overhead of such an
approach may remove any gain from the parallel execution.

For each single node elimination, the algorithm updates the
entries of the matrix corresponding to the branches and nodes of
the connecting neighbors. The total number of connected nodes,
i.e. in both the nc- and vc-part of the network, is in practice
sufficiently large that some fine-grained parallelism can be
exploited in this operation. In order to avoid overhead in
synchronising threads, SIMD (single instruction, multiple data)
vector instructions are used to perform the updates for four
branches at a time. This produces a two to three times speed-up of
the node-elimination process.

In each successive node elimination, the update formula (5)
requires division by the diagonal element of the node to be
eliminated, i.e. Y(k, k) when eliminating the kth node. For
factorisation algorithms in general, attention must be payed to the
numerical stability when the diagonal value is small compared to
the off-diagonal element. The division can be avoided by pivoting
rows or columns in the matrix [25].

Admittance matrices representing power grids may not be
diagonally dominant, and diagonal entries with small absolute
value can occur e.g. due to the addition of shunts. Fortunately,
small diagonal entries can be handled elegantly in the reduction
step without introducing complicated pivot schemes: If a node is
encountered with low absolute value, the elimination can just skip
the node. The subsequent factorisation performed by the LU-
factorisation algorithm then takes care of the pivoting. Thus,
numerical stability can be ensured by merely adding a runtime-
check for small diagonal entries.

8.2 Forward solve step

Both the forward solutions (7), (8) and the following computation
of inner products are completely parallel operations. Without
parallelisation, these steps will dominate execution time. In
particular, computing the M2 inner products for network reduction
is time consuming.

The 2M solutions involved in the forward solve steps can be run
in parallel. Each individual solution is a serial operation and can in
general be computed very fast using a sparse forward solution. In

addition, if no pivoting occurs, the evaluation tree can be
precomputed for each row and column reducing the execution time
for the numerical solution. The whole process can be efficiently
executed on e.g. a multi-core CPU using several threads. For the
Thevenin impedance, the subsequent M inner products can in
addition efficiently be calculated using the same threads. The
algorithms used for each forward solution and sparse inner product
is described in [25].

The quadratic scaling of the M
2 inner products for network

reduction forces a different approach for the network reduction
algorithm. The limited number of CPU cores on present machines
makes the effect of parallelisation limited: in Section 9, the
algorithm will be evaluated on power systems that allow evaluation
of >106 inner products in parallel but a standard machine usually
have <12 cores. This difference suggests using massively parallel
execution units such as GPUs.

A typical GPU allows a much larger number of execution units
to work in parallel than a CPU, and the large number of cores can
significantly speed-up the evaluation of the M

2 inner products.
Usually, the work flow when employing GPUs consist of a transfer
from the main computer memory to the GPU memory, execution of
the GPU program, and transfer of the result from GPU memory to
the main computer memory. As the inner product computation can
be expressed as a multiplication of two sparse matrices, a general
sparse matrix multiplication kernel can be used to do the actual
computation on the GPU card. For this task, the cuSPARSE library
is used [https://developer.nvidia.com/cusparse].

The actual GPU computation is relatively fast compared to the
memory transfer operations. This is in particular amplified by the
fact that cuSPARSE requires one of the two matrices to be
multiplied to be structured as a dense matrix. Since matrices of
dimension M × N − M and N − M × M are multiplied to obtain a
matrix of dimension M × M, the transfer memory time is
dependent on the size of N. Conveniently, the reduction step of the
reduce–factor–solve algorithm removes a large part of the nc nodes
before the inner product calculation. This produces a sufficient
reduction in memory transfer time. See, e.g. [31, 32] for additional
ongoing research on the data structures used for sparse GPU
computations

9௑Experiments
In the first set of experiments, the speed-up provided by the
reduce–factor–solve Thevenin impedance algorithm, its absolute
runtime, and its validity is evaluated. In particular, the experiments
will show that the Thevenin impedance of all generators for power
systems of considerable sizes can be established in <3 ms. In
addition, the runtime of the serial and parallel parts of the
algorithm will be explored in order to evaluate the achieved overall
efficiency, and a great reduction in size and number of non-zeros
for the matrix to be factored will be observed.

In the second set of experiments, network reduction with the
reduce–factor–solve approach is considered and the effect of
parallelisation and GPU computation is investigated. In particular,
it will be shown how the reduction step reduces the time spent on
host GPU memory transfer.

The algorithms will be compared to the existing method
described in [24]. In addition, multiple methods for computing the
Schur complement will be explored. The validity of the algorithms
is ensured by measuring the differences in the output of the
methods. For all experiments, it is observed that the results are
equal up to numerical precision showing that the new algorithms
produce correct results.

The experiments are performed on admittance matrices
generated from test systems included in the PSS® E-30.0 and
MATPOWER [33] network simulation packages [see http://
www.pserc.cornell.edu/matpower/docs/ref/matpower5.0/case*.html
and https://bitbucket.org/stefansommer/networkred/src/master/
data/. Only test systems with sufficient size to ensure non-
negligible runtime are included in the evaluation]. The test systems
include the US west-coast (1648 buses, 2602 branches) and US
east-coast (7917 buses, 13,014 branches) power grids along with 6
additional systems ranging from 2383 to 3120 buses.
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The runtime is tested on a 3.2 GHz Intel Core i7 hexa-core
CPU. In accordance with [24], UMFPACK [21] is used for
factoring the full admittance matrix with the reference method, and
KLU [21] is used for the factorisation step of Algorithm 1.
Pivoting is disabled for all factorisation methods. The main loop of
the algorithm is parallelised over the CPU cores using threads, and
the node elimination step uses SIMD instructions to exploit fine-
grained parallelism. The GPU computations are performed on
NVIDIA Titan Xp GPUs with 12 GB of memory and 3840 CUDA
cores per card.

9.1 Thevenin impedance computation

Fig. 4 shows for each test system the runtime of the Thevenin
impedance algorithm employing LU-factorisation of the full
admittance matrix, the runtime of the reduce–factor–solve
algorithm without node elimination, and the reduce–factor–solve
algorithm with node elimination prior to the factorisation. For all
three approaches, the runtime of the initial preparation step is left

out of the measurements because this step only need to be done
once for each network. The timings are performed just on the
computational parts leaving out the time used for initial copying of
data, and the obtained timings are averaged over a large number of
runs. Note the logarithmic scale on the vertical axis and the
achieved ∼80 times speed-up on the largest system with the
reduce–factor–solve algorithm compared to the previous method. 

In Fig. 5, the runtime of the three different steps in the reduce–
factor–solve algorithm is plotted: reduction, factorisation, and
forward solve. It can be seen that a relatively large portion of the
computational effort is spend on the forward solve. It is important
to relate this to the fact that the forward solve step is completely
parallelizable. For the results here, all six cores of the test machine
are used. If a reduction in runtime is needed, a machine with more
cores will allow the runtime of the forward solve step to be driven
down below the runtime used for the reduction and factorisation. 

Because the forward solve step can be parallelised, the serial
parts of the algorithm are in reality the true bottlenecks. In Fig. 6,
the runtime of the serial parts are plotted in order to evaluate the
benefits of the node elimination step. Employing node elimination
results in a two to three times speed-up for this part of the
algorithm: for the largest test system, the factorisation time without
node elimination is 2.4 ms. With node elimination, elimination and
factorisation takes 0.8 ms combined. In terms of sparsity, for the
largest test system, the reduce–factor–solve algorithm reduces the
dimension of the matrix to be factorised from 7917 × 7917 (the full
admittance matrix) to 960 × 960 (the node eliminated non-
controlled part of the admittance matrix). At the same time, the
number of non-zeros in the factors is reduced from 1,549,093 to
10,174. 

9.2 Network reduction

Progressing to full network reduction, Fig. 7 shows the execution
time when reducing the entire nc part of the network. As
previously discussed, the reduce–factor–solve algorithm can be
seen as a hybrid between node elimination and direct evaluation of
the matrix (4). Therefore, these two approaches and the reduce–
factor–solve Algorithm 1 are compared. The tests are performed
with and without GPU acceleration using one GPU. 

The differences between the methods are the potential for
parallelisation, and, for the GPU code, the time spent on memory
transfer. Node elimination uses parallelisation exclusively inside
each elimination step, and therefore consistently performs worse
than the remaining methods that allows more parallelisation. For
the largest system, the reduce–factor–solve algorithm with GPU
acceleration reduces the execution time an order of magnitude
compared to node elimination.

Comparing the GPU accelerated direct evaluation of (4) with
the reduce–factor–solve approach, the speed–up is mainly a result
of a reduction in memory transfer times. The node reduction step
of the reduce–factor–solve approach decreases the number of nc
nodes by roughly a factor 6 for the largest system resulting in an
equivalent reduction in host-to-GPU memory transfer time. The
GPU-to-host transfer of the computed result is not affected. Both
approaches uses ∼6 ms for the actual computation but the memory
transfer time is reduced from 44 to 8 ms with the reduce–factor–
solve approach.

For all but the largest system, the total execution time for the
reduction of the nc part of the network is below 10 ms For the
largest network, the execution time is 14 ms. However, due to the
parallelisation ability of the inner product calculation, using
multiple GPU cards can further reduce the memory transfer and
computation time. Using two GPUs, the execution time is
approximately halved. Addition of more GPUs beyond two has
little effect on the execution time as not all of the very large
number of compute cores can be effectively utilised for systems of
the size considered here. Larger systems may however benefit from
computations using >2 GPUs.

Fig. 4௒ Computation time for determining Thevenin impedances when
factorising the full admittance matrix ([24], red), the reduce–factor–solve
algorithm without node elimination (black), and the reduce–factor–solve
algorithm with node elimination (blue). Evaluation performed on 8 power
grids ranging from 1648 buses to 7917 buses with between 313 and 1325
vcs. Note the logarithmic scale on the time axis. For the largest system, the
new method is roughly 80 times faster than the previous approach

 

Fig. 5௒ Timings for the three different parts of the reduce–factor–solve
algorithm: factorisation (blue), node elimination (green), and forward solve
(red). The forward solve step parallelizes completely and the runtime can
thus be reduced by employing more computational cores
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10௑Future work
The algorithms discussed in this paper concerns some of the steps
involved in common transient stability methods. Online application
of these methods will require fast computation of all the involved
operations. In particular, a number of algorithms including the
Lyaponov method and EAC solves linear systems involving the
reduced admittance matrix. In this paper, it is shown how to
compute the reduced matrix fast, e.g. for evaluating the Lyaponov
energy. However, because the reduced matrix is dense, the network
sparsity cannot be exploited when solving the mentioned linear
system. The speed-up of the reduce–factor–solve approach lies
precisely in the ability to avoid dense sub-matrices, and we are
therefore working on applying similar approaches to reducing the
execution time of the remaining operations needed for the transient
stability methods.

11௑Conclusion
Real-time calculation of different properties of the grid operation
state is necessary for online stability and security assessment. In
particular, calculating Thevenin impedances and performing
network reduction is important for several suggested approaches to
stability and security assessment. The paper introduces the reduce–
factor–solve approach that allows computation of both Thevenin
impedances and fast network reduction, and it describes the
theoretical foundation and implementation details for the
algorithm.

The performance and validity of the approach is tested on
several power systems. Comparison with previous approaches
shows ∼80 times speed-up for the largest power system for
calculation of Thevenin impedances and 5 times speed-up when
performing network reduction using GPU acceleration.
Consequently, neither Thevenin impedance computation or
network reduction constitute bottlenecks for real-time stability and
security assessment.
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