
Original Article

Estimation of an image derived input
function with MR-defined carotid arteries
in FDG-PET human studies using a novel
partial volume correction method
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Abstract

Kinetic analysis of 18F-fluorodeoxyglucose positron emission tomography data requires an accurate knowledge the

arterial input function. The gold standard method to measure the arterial input function requires collection of arterial

blood samples and is an invasive method. Measuring an image derived input function is a non-invasive alternative but is

challenging due to partial volume effects caused by the limited spatial resolution of the positron emission tomography

scanners. In this work, a practical image derived input function extraction method is presented, which only requires

segmentation of the carotid arteries from MR images. The simulation study results showed that at least 92% of the true

intensity could be recovered after the partial volume correction. Results from 19 subjects showed that the mean

cerebral metabolic rate of glucose calculated using arterial samples and partial volume corrected image derived input

function were 26.9 and 25.4 mg/min/100 g, respectively, for the grey matter and 7.2 and 6.7 mg/min/100 g for the white

matter. No significant difference in the estimated cerebral metabolic rate of glucose values was observed between

arterial samples and corrected image derived input function (p> 0.12 for grey matter and white matter). Hence, the

presented image derived input function extraction method can be a practical alternative to noninvasively analyze dynamic
18F-fluorodeoxyglucose data without the need for blood sampling.
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Introduction

Cerebral metabolic rate of glucose (cMRglc) in the brain
can be quantitatively estimated using dynamic
18F-fluorodeoxyglucose (18F-FDG) positron emission
tomography (PET) studies. To quantify this parameter,
the dynamic behaviour of the 18F-FDG tracer needs to
be described using a compartmental kinetic model1

or Patlak analysis.2,3 These kinetic analysis methods
require an accurate knowledge of the available tracer
concentration in plasma as a function of time, also
known as the arterial input function (AIF). The AIF
is conventionally measured by arterial cannulation
and collection of blood samples, which is an invasive
and uncomfortable procedure. Population-based input
functions4,5 can be used as an alternative but these may

introduce further errors due to the varying physiology
across subjects and different injection protocols (i.e. injec-
tion rates) used during the introduction of the radiotracer.
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Another noninvasive alternative to arterial blood
samples is using image derived input functions (IDIFs),
which are directly obtained from the reconstructed PET
images. IDIFs can be derived by placing a volume of
interest (VOI) over a suitable blood pool and creating
a time activity curve (TAC) for whole blood signal. This
method works successfully when vascular structures with
large diameter such as aorta are in the field of view;6,7

however, it suffers from partial volume (PV) and spill-
over effects in brain PET studies where carotid arteries
are used. These artefacts are caused by the limited spatial
resolution of the PET scanners, which may not be able
to distinguish the exact source of the signal in small
structures. Hence, the measured activity from carotid
arteries will be affected by spill-out and spill-in effects
and will not reflect the exact tracer concentration present
in the blood. Variations in the blood to background
ratio over time will result in changes in the shape of
the derived IDIF.

There have been several studies trying to validate
IDIF methods in brain imaging, aiming to avoid the
need for blood samples. These methods included vari-
ous approaches to delineate arterial voxels from PET
images or coregistered anatomical images and to cor-
rect for PV effects.8 Some of these methods require one
or more blood samples to scale the estimated IDIF,9,10

but there are also some fully blood-free methods, which
have recently become available.11,12 Zanotti-Fregonara
et al. compared eight of these methods13 and concluded
that more accurate kinetic analysis results can be
obtained with methods using blood samples to scale
the AIF compared with the blood-free methods.

In this work, we present a non-invasive blood-free
IDIF extraction method, which utilises magnetic reson-
ance angiography (MRA) images to delineate the arter-
ial voxels. A practical partial volume correction (PVC)
technique, which only requires segmentation of the
region of interest (i.e. carotid arteries), is applied to
correct PV effects. IDIFs extracted using the proposed
method was used to quantify cMRglc in human subjects
and results were validated against the input function
based on arterial samples.

Materials and methods

Theory

In this work, we use a recently proposed PVC method
called the Single-Target Correction (STC) method.14 This
method requires segmentation of one single VOI and is
not dependent on any separately segmented background
regions. Hence, it does not need complex segmentation of
the background areas. The correction is performed on a
voxel-by-voxel basis using an iterative procedure, and uni-
formity of activity concentration within the defined region

is assumed for the spill-out correction. Individual voxel
values were used for the spill-in correction. The new
method is a modification of a previous method called
Multi-Target Correction (MTC),15 which was an exten-
sion of the Müller–Gärtner method.16

The correction procedure starts with the blurred
image. In each iteration, the algorithm first corrects
for spill-over between the voxels inside and outside of
the VOI. This is done by subtracting a background
term, which is re-calculated in each iteration. Next, it
corrects for spill-out by dividing by recovery coeffi-
cients, which depend only on the size and shape of
the VOI and on the PSF of the system. This follows
from the assumption of uniformity.

If að�Þ is the true image, the image, bð�Þ, blurred by
the PSF, can be described as follows:

b xð Þ ¼

Z
a yð Þh x, yð Þdy ð1Þ

where hð�, �Þ is the PSF of the system (which can be
position-invariant, although this is not strictly neces-
sary), and x and y are 3D spatial coordinates.

If a VOI is defined, called �, the STC method can be
described as follows in pseudo-code:

â0 xð Þ ¼ b xð Þ

R xð Þ ¼ I� xð Þ

Z
y2�

h x, yð Þdyþ 1� I� xð Þð Þ

Z
y =2�

h x, yð Þdy

for k ¼ 0 to N � 1 begin

gk xð Þ ¼ I� xð Þ

Z
y =2�

âk yð Þh x, yð Þdy

þ 1� I� xð Þð Þ

Z
y2�

âk yð Þh x, yð Þdy

âkþ1 xð Þ ¼
1

R xð Þ
b xð Þ � gk xð Þð Þ

end

where âk �ð Þ is the estimated image after k
iterations, I�(�) is the indicator function for �, R(�)
contains the recovery factors to correct for spill-out,
gk(�) represents the spill-over term, estimated at each
iteration and N is the number of iterations.

The main difference between STC and the Müller–
Gärtner method16 is that STC does not require prior esti-
mation of the mean value in the background region/
regions for the spill-in correction. Instead, this correction
term is estimated iteratively on a voxel-by-voxel basis.
For this purpose, it is necessary to estimate the spill-over
in both directions across the region boundary.
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Simulation work

To evaluate the performance of the Single-Target PVC
method, a simulation study based on real carotid
arteries MR data was designed. Segmented carotid
arteries from an MRI angiography image with voxel
size of 0.39� 0.39� 1mm3 were used to generate 3D
emission and attenuation maps. An attenuation coeffi-
cient value of 0.096 cm�1 was assigned to soft tissue.
To generate a digital 3D phantom, emission values
were assigned to a uniform background region and
inside carotid arteries on the segmented images. Six dif-
ferent phantoms with various background to artery
intensity ratios were generated with ratios of 1/10,
1/5, 1/3, 1/1, 1.5/1 and 2/1. Each phantom was blurred
using an isotropic Gaussian point spread function
(PSF) with FWHM of 6.50mm and forward projected
using Software for Tomographic Reconstruction
(STIR)17 to generate simulated 3D PET data. The
Siemens Biograph mMR scanner geometry was simu-
lated, taking account of attenuation and scatter. PET
images were reconstructed using OSEM with three iter-
ations and 21 subsets to a 3D matrix with a voxel size of
2.08� 2.08� 2.013mm3.

The reconstructed PET images were resampled to
MR angiography space (0.39� 0.39� 1mm3) using
tri-linear interpolation and the STC PVC method was
applied with 15 iterations and the segmented carotid
arteries as the mask image. To evaluate the effect of
different PSFs in the correction, STC was applied to
each of the reconstructed phantoms and the error
between the recovered and true carotid activities were
computed for different PSFs. The optimal PSF FWHM
value was found by minimizing the mean error, aver-
aged across the six phantoms.

An additional experiment was designed to measure
the PSF from the reconstructed PET images. First, the
centroids of the carotid arteries on axial PET and seg-
mented MR images were found. The segmented images
were blurred using a 3D Gaussian PSF. Line profiles
were drawn through centroids of left and right carotid
arteries in x and y directions on both PET and blurred
segmented MR images. These line profiles were fitted
with a Gaussian function and mean FWHMs of
Gaussian fits were calculated for PET and blurred
MRI data. This was repeated in an optimization rou-
tine to find the optimal PSF, which gave the lowest
difference between the mean FWHM of fitted
Gaussian functions on PET and blurred segmented
MR line profiles.

Data acquisition

Dynamic PET and anatomical MRI images were
acquired on 21 healthy male subjects (mean age: 28.3
years, range: 22–40 years). The protocol for this study

was approved by the Danish National Committee on
Health Research Ethics (h-4-2012-167) and was con-
ducted in accordance to the Declaration of Helsinki.
All subjects had given written informed consent.

Each subject received an intravenous bolus injection
of 200MBq of 18F-FDG over 20 s followed by 10mL
of saline flush and underwent a dynamic PET scan
on a Siemens Biograph 64mCT scanner (Siemens
Healthcare, Erlangen, Germany). The dynamic scan
lasted for 1 h and data were sorted in the following
manner: 6� 10 s, 2� 30 s, 3� 60 s, 2� 150 s, 2� 300 s
and 3� 600 s. The PET images were reconstructed
using OSEM with four iterations and 24 subsets and
a 4-mm Gaussian filter was applied. The data were
reconstructed into a 128� 128 matrix with a pixel size
of 2.5mm and 74 slices were acquired with a slice thick-
ness of 3mm. Attenuation correction was performed
using information from the CT scan. The PET data
were corrected for randoms, scatter, attenuation and
radioactive decay. Arterial blood samples for measure-
ment of radioactivity concentration in arterial plasma
were drawn from the radial artery at 33 time points,
with 10 s intervals in the first 2min. Sampling was per-
formed using vials with internal vacuum over 3 s at the
beginning of each time interval. Immediately prior to
each measurement, a similar vial was used to rinse resi-
dual activity out of the catheter. Plasma radioactivity
concentrations were measured in a well-type gamma
counter (COBRA 5003; Packard Instruments). Plasma
glucose level and hematocrit were also measured for
each subject.

All MRI scans were performed on a 3T Achieva MRI
scanner (Philips Medical Systems, Best, The Netherlands)
using a 32-channel phased array head coil. Anatomical
Magnetization Prepared Rapid Gradient Echo
(MPRAGE) scans were obtained with a 3D T1-weighted
turbo field echo sequence (150 slices, FOV¼ 241�
180� 165mm3, TE¼ 2.78ms, TR¼ 6.9ms, flip
angle¼ 9�) and were reconstructed into a 150� 224�
224 matrix with a voxel size of 1.1� 1.1� 1.1mm3.
High resolution time of flight angiography MR (MRA)
images of the head and neck region were also acquired
(100 slices, slice thickness¼ 1mm, FOV¼ 200� 200 cm2,
TR¼ 23ms, TE¼ 3.5ms, flip angle¼ 18�) and were
reconstructed with a voxel size of 0.39� 0.39� 1mm3.
Figure 1 shows examples of PET and MR images used
in this work.

Data analysis

Data from 2 of the 21 subjects were not included in the
data analysis due to the movement of the head during the
dynamic PET scan. Carotid arteries were segmented from
MRA images using ITK-SNAP version 3.2,18 which
includes an automatic active contour segmentation.
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Images were classified into two tissue classes using tissue
classification and a region-growing algorithm was applied
in the region with the arteries. Because of the different
field of view of MRA images compared with the PET
images, segmentation was limited to 3 cm below the pet-
rous section of left and right internal carotids arteries
(Figure 1(d)).

A linear image registration tool19 was used in the
PET-MR image registration. Because of the different
fields of view of the MRA and PET images, a two-step
image registration method was applied where MPRAGE
images were also utilized as they have the same field of
view as the PET images. Within modality registration,
MPRAGE to MRA was performed using translation
(3 parameter) followed by a rigid registration (6 param-
eter) locally applied to masked carotid arteries. For the
cross-modal registration, the sum of earliest 6 PET
frames (0–60 s) was computed to maximize the intensity
in the arteries and was registered to the MPRAGE
image using a rigid registration (6 parameter). The com-
bined matrix of these three transformations was used to
resample PET frames onto MRA space.

PV effects in PET frames were corrected using STC
where the segmented carotid arteries were used as
the region of interest. A three-dimensional position-
invariant isotropic Gaussian function with 6.8mm
FWHM was used to represent the scanner’s PSF.

This PSF value was obtained by implementing the PSF
measurement method by computing the FWHM of
fitted Gaussian function to line profiles across the caro-
tid centroids, as described above. This was performed
for the two PET frames with highest arterial intensities
(20 to 40 s) and the mean FWHM value between frames
is calculated. This was done for each of the 19 subjects
and the average calculated FWHM is used in the PVC of
all subjects (6.80� 0.36mm, range of 6.05mm to
7.38mm). Correction was applied to each PET frame
individually. The PVC algorithm was found to converge
in 10 iterations, after which the mean intensity within the
carotid arteries stopped changing significantly.

After correcting for PV effects, whole blood TAC
was measured by computing the mean intensity within
the segmented carotid arteries. To obtain the IDIF,
whole blood concentration was converted to plasma
concentration using a rearranged version of equation
(2), where HCT represents measured hematocrit and
CBlood, CRBC and CPlasma represent the radioactivity
concentration in whole blood, red blood cells and
plasma, respectively. A population-based CRBC/
CPlasma relationship was used in this conversion.20

CBlood ¼ HCT � CRBC þ ð1�HCTÞ � CPlasma ð2Þ

Figure 1. Images used in this study: (a) PET frame showing the arteries, (b) MPRAGE image of the brain, (c) TOF MR angiography

image of neck region and (d) PET frame co-registered to the MR angiography image. Marked voxels show the arterial voxels delineated

from the MR angiography image.
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As the arterial blood samples were taken from the
radial artery, while the IDIFs were obtained from car-
otid arteries, there was a time difference and dispersion
between these two input functions. To make a fair
comparison against arterial blood samples, delay and
dispersion were applied to the measured IDIFs. Delay
was added to the IDIF by shifting the curve to later
times to match the tracer arrival times of IDIF and
arterial samples. Then it was convolved with a mono-
exponential function to simulate dispersion. This was
done in an optimization to estimate the delay and time
constant of dispersion that gave the best match between
the subject’s IDIF and arterial AIF peak shapes. This
was performed for each subject independently and the
averaged delay and dispersion values were used in
the kinetic analysis. Finally, to see the effect of scaling,
the measured IDIF curve with blood samples, the ratio
between the mean of the last three arterial blood sam-
ples and the mean of the last three IDIF activities were
calculated and the uncorrected and PV corrected IDIF
curves were scaled using this ratio.

All PET kinetic analysis was done using PMOD
(PMOD Technologies, Zurich, Switzerland). For each
subject, two TACs were generated using average grey
matter and white matter activity and these were fitted
using the two-tissue compartment model20 with three
rate constants (K1, k2 and k3). K1 and k2 represent
the transfer from the vascular to the extra-vascular
space and vice-versa, respectively, while k3 represents
the transport across the cellular membrane and subse-
quent phosphorylation, leading to irreversible trapping
of the tracer. The rate constant representing the trans-
fer of tracer from metabolized state back to the unme-
tabolised state was assumed to be negligible (k4¼ 0).
Cerebral blood volume (Vb) was also estimated
during the curve fitting. Equation (3) was used to com-
pute net tracer uptake, Ki, and cerebral metabolic rate
of glucose consumption, cMRglc, for each subject.

Ki ¼
K1k3

k2 þ k3

and

cMRglc ¼
Cglu Ki

LC
ð3Þ

where LC is a lumped constant representing the ratio of
18F-FDG utilization to actual glucose utilization within
the brain and Cglu is the cold glucose concentration. In
this analysis, LC was set to be 0.8921 (irreversible FDG
model) and Cglu was measured by taking a blood
sample from each subject before the PET scan. The
input functions derived before PVC (IDIFUncorrected),
after PVC (IDIFPVC) and from plasma samples

(AIFSamples) were fitted with Feng’s input function
model, which consists of the sum of a gamma-variate
function and two exponentials.4 Grey matter and white
matter TACs were fitted using these three input func-
tions and effects of PVC on estimated cMRglc values
were evaluated. The performance of the proposed
method was also tested by comparing the area under
curve (AUC) of derived IDIFs and arterial samples.
Paired Student’s t-test was used to evaluate the statistical
difference between AUC and cMRglc values calculated
using IDIFPVC and AIFSamples, where a significance level
of 0.05 was adopted throughout.

Results

Simulation results

Figure 2 illustrates the ratio of recovered intensity after
PVC to the true intensity within the carotid arteries for
each iteration. The first value (iteration 1) represents
the intensities before the PVC is applied and it can be
seen that the PV effect increases when the difference
between the carotid artery intensity and background
intensity is increased. This is caused by the reduced
relative spill-in effect from background tissues to the
arteries as the intensity within the arteries is increased.
When the PSF with 6.50mm FWHM was used,
which is identical to the PSF used to blur the mask
image in the phantom generation, the correction con-
verged to a solution after 10 iterations. As can be seen
in Figure 2(a), at least 87.4% of the true intensity was
recovered for all of the six phantoms. PSF with
6.74mm FWHM was found to give the smallest differ-
ence between the recovered and the true intensities
across the all datasets. Figure 2(b) shows the results
when this optimal PSF was used and it can be seen
that a better recovery was reached with this PSF
where 92.9% of true intensity was recovered at min-
imum. A similar PSF FWHM value, 6.72mm, was
obtained when it was measured by drawing line profiles
to carotid centroids of the reconstructed PET and
MR images and results with this PSF is illustrated in
Figure 2(c). At minimum, 92.4% of the carotid artery
intensity could be recovered with this PSF.

Clinical data results

The mean value for prescan blood glucose was
5.07mmol/L (4.3–5.7mmol/L) and average hematocrit
was 41% (36–45%). Figure 3 shows the IDIFPVC

derived from one subject plotted together with
IDIFUncorrected and AIFSamples as well as IDIFPVC and
IDIFUncorrected scaled with blood samples. It can be
seen that application of the PVC increases the intensi-
ties both at early and late parts of the input function.

1402 Journal of Cerebral Blood Flow & Metabolism 37(4)



The tail of the IDIFPVC (after 3min) was well matched
with AIFSamples, which shows that the PVC method
worked successfully to recover the accurate inten-
sity values within the carotid arteries. The first
frames of the IDIFUncorrected and IDIFPVC after the
delivery of the tracer showed a much higher differ-
ence where the PVC increased the peak of the input
function by 300% in average. After PVC, a close
match between AIFSamples and IDIFPVC peak
shapes was observed (Figure 3(b)). Across the 19 sub-
jects, an average time shift of 9.49 s was observed
between the peaks of these two input functions.
Similarly, the average dispersion time constant was com-
puted as 4.70 s between the carotid artery and radial
artery TACs.

Comparison of the computed AUC values for each
of the three input function curves was illustrated in

Figure 4. The mean and standard deviation of
AUC values in MBq.min/mL was 15.5� 2.0 for
IDIFUncorrected, 19.7� 2.0 for IDIFUncorrected scaled
with blood samples, 26.0� 2.9 for IDIFPVC, 22.7� 2.8
for IDIFPVC scaled with blood samples and 26.8� 2.6
for AIFSamples. In all of the 19 subjects, IDIFUncorrected

had significantly lower AUC values (paired t-test,
p< 0.0001), which confirms the underestimation
of the input function due to PV effects. It was seen
that applying the PVC brought the area under the
IDIF curve to a good agreement with the AIFSamples.
Comparing the area under the IDIFPVC and AIFSamples

for each subject, there was no statistically significant
difference between AUC of these curves with a p
value of 0.16. AUC of IDIFPVC scaled with late
blood samples was also found to be significantly differ-
ent than AIFSamples (p< 0.001).
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Figure 2. Recovered intensity to true intensity ratios for each iteration of partial volume correction. Results are shown for six

different background to carotid intensity ratios. (a) The result when PSF FWHM is 6.5 mm, (b) PSF is 6.74 mm and (c) 6.72 mm.
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Tables 1 and 2 list the summary of the kinetic par-
ameter and cMRglc results estimated for grey matter
and white matter using IDIFUncorrected, IDIFPVC and
AIFSamples. When IDIFUncorrected was used, cMRglc in
grey matter was overestimated by 50.9% in average
compared with the estimates with AIFSamples.
Similarly, cMRglc in white matter was overestimated
by 45.4% when IDIFUncorrected was used. Using the
IDIFPVC largely improved the estimates, bringing the
average absolute error to 5.6% and 7.5%, respectively.
Performing a paired t-test on the results obtained with
IDIFPVC and AIFSamples showed no statistically signifi-
cant difference for both regions (p¼ 0.12). Bland–
Altman plots of individual cMRglc estimates for white
and grey matter are shown in Figure 5, illustrating that

there was no consistent bias in the produced white
matter results. However, there is a statistically signifi-
cant positive trend in the grey matter cMRglc results
(Pearson correlation, p< 0.005). At present, this effect
remains unexplained.

For individual kinetic parameter estimates, using the
IDIFUncorrected overestimated the K1 parameter by
247.0% on average for grey matter and white matter,
respectively. This error was reduced to 21.0% and
22.7% after the PVC correction. There was no statis-
tically significant difference on the k2 parameter values
produced with IDIFPVC and AIFSamples (p¼ 0.98). On
the other hand, using the IDIFUncorrected underesti-
mated k3 values but IDIFPVC reduced this difference
by a factor of 2, similar to the improvement seen for
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Figure 3. (a) IDIFUncorrected, IDIFPVC, IDIFPVC scaled with blood samples, IDIFUncorrected scaled with blood samples and AIFSamples

plotted together for one subject. (b) Input function curves plotted for first 4 min only to show the peaks. Dispersion was added to

IDIFPVC and IDIFUncorrected curves. (c) Input function curves plotted for last 30 min.
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k2 results. IDIFPVC was able to return Vb, k2 and
cMRglc values with no significant differences.

Using three arterial blood samples to scale the
IDIFPVC slightly improved the mean of cMRglc esti-
mates, with an average absolute percent difference of
0.3% and 1.5% and no statistically significant differ-
ence (p¼ 0.93 and p¼ 0.72) against AIFSamples for
grey and white matters, respectively. Scaling increased

the error on the K1 parameter, with 35.0% and 38.6%
error against the AIFSamples. Similar to IDIFPVC results,
scaled IDIFPVC was able to return Vb, k2 and cMRglc

with no significant difference to AIFSamples. Scaling
the IDIFUncorrected with blood caused an improvement
on the cMRglc estimates. However, there was a signifi-
cant difference between scaled IDIFUncorrected and
AIFSamples cMRglc estimates (p< 0.01). Furthermore,
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Figure 4. Area under curves (AUCs) of AIFSamples, IDIFPVC, IDIFPVC scaled with blood samples, IDIFUncorrected and IDIFUncorrected

scaled with blood samples. Dots represent individual AUCs and lines represent the mean AUC across the group.

Table 1. Grey matter results.

Grey matter

Vb K1 k2 k3 K1/k2 Ki cMRglc

AIFSamples 0.059� 0.019 0.123� 0.014 0.121� 0.045 0.079� 0.023 1.175� 0.581 0.049� 0.004 26.88� 2.36

IDIFPVC 0.050� 0.020 0.149� 0.022* 0.124� 0.044 0.056� 0.025* 1.323� 0.490 0.046� 0.008 25.38� 4.66

Scaled IDIFPVC 0.050� 0.020 0.166� 0.038* 0.118� 0.044 0.053� 0.024* 1.592� 0.645* 0.049� 0.005 26.95� 2.92

IDIFUncorrected 0.076� 0.015* 0.427� 0.098* 0.219� 0.063* 0.046� 0.007* 2.017� 0.429* 0.074� 0.009* 40.56� 4.82*

Scaled IDIFUncorrected 0.101� 0.022* 0.325� 0.070* 0.220� 0.070* 0.047� 0.008* 1.531� 0.293* 0.057� 0.007* 31.35� 3.91*

Mean value and standard deviation of kinetic parameters and cMRglc estimates for grey matter calculated using arterial samples, PV corrected IDIF, PV

corrected IDIF scaled with blood samples, uncorrected IDIF and uncorrected IDIF scaled with blood samples for 19 subjects. *Parameters with

significant difference to arterial samples (paired t-test, p< 0.05).
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it yielded large errors on the individual kinetic parameter
estimates.

Discussions

Simulated data results showed that STC can be accur-
ately applied to regions with different region-to-back-
ground activity ratios and can correct for spill-in and
spill-out effects accurately. Using a PSF value with a
larger FWHM than the original PSF used to blur
the phantoms resulted in more accurate PVC. This indi-
cate that further blurring was caused by the forward-
projection, reconstruction and re-sampling of the data,
mainly due to interpolation effects. A PSF FWHM
value closer to the optimal value could be accurately
measured from the reconstructed PET images and
using this PSF resulted in similar recovery performance
for all of the datasets. This indicates that a reliable PSF

can be measured from reconstructed PET images if the
true shape and size of the region of interest is known.

Because of the small diameter of carotid arteries,
IDIFs directly estimated from reconstructed PET
frames are severely affected by the PV effects. Results
from this study show that such IDIFs have significantly
lower tracer concentration even when the arterial VOIs
are delineated from high-resolution MR anatomical
images. Errors caused by PV effects are especially
observed in the early frames, where the peak of the
input function is highly underestimated. Performing a
PVC greatly improved the recovery of signal intensities
within the carotids and a good visual agreement was
observed against input function curves acquired from
serial arterial sampling. Using the PV corrected IDIFs
also yielded a good agreement between the estimated
cMRglc values with the arterial samples. Scaling the PV
corrected IDIF with late blood samples resulted in
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Figure 5. Bland–Altman plots of cMRglc estimates with arterial blood samples and PV corrected IDIF for (a) grey matter and (b)

white matter.

Table 2. White matter results.

White matter

Vb K1 k2 k3 K1/k2 Ki cMRglc

AIFSamples 0.029� 0.008 0.044� 0.009 0.092� 0.030 0.040� 0.013 0.512� 0.125 0.013� 0.002 7.22� 1.10

IDIFPVC 0.027� 0.010 0.054� 0.012* 0.101� 0.032 0.030� 0.009* 0.573� 0.136 0.012� 0.003 6.68� 1.35

Scaled IDIFPVC 0.027� 0.008 0.061� 0.014* 0.096� 0.024 0.027� 0.009* 0.655� 0.157* 0.013� 0.002 7.26� 1.07

IDIFUncorrected 0.038� 0.008* 0.151� 0.037* 0.181� 0.040* 0.027� 0.006* 0.850� 0.180* 0.019� 0.004* 10.50� 1.89*

Scaled IDIFUncorrected 0.048� 0.010* 0.114� 0.028* 0.179� 0.041* 0.027� 0.006* 0.652� 0.134* 0.015� 0.003* 8.05� 1.16*

Mean value and standard deviation of kinetic parameters and cMRglc estimates for white matter calculated using arterial samples, PV corrected IDIF and

uncorrected IDIF for 19 subjects. *Parameters with significant difference to arterial samples (paired t-test, p< 0.05).
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smaller AUC values compared with the arterial sam-
ples. This can be due to the variation of the error in the
PVC at different time points as the early frames are
more affected from spill-out effects than later time
points. Therefore, a single scaling constant measured
at the latest part of the curve may not be sufficient to
calibrate the whole input function.

In this work, we have used a novel image-based PVC
method in the IDIF estimation. This method only
requires an accurate segmentation of the region of inter-
est, which is the carotid artery in this application. This
eliminates the need for complete parcellation of the
image into separate regions, which is a necessary step
for most image-based PVC methods to operate,22,23 or
even definition of representative background regions.13

Therefore, here we have implemented a more practical
PVC method for the purpose of IDIF measurements.

The performance of the presented method highly
depends on the accuracy of segmentation, image regis-
tration and PSF estimation. As presented here, time of
flight MR angiography images can be easily used to
segment carotid arteries, as they clearly distinguish
signal coming from inflowing blood compared with
neighbouring voxels. Typical T1-weighted MPRAGE
images have larger voxel size, which can affect the
accuracy of the segmentation of internal carotid
arteries with small diameter. Furthermore, background
regions neighbouring the carotid arteries have higher
intensity on MPRAGE images and can interfere with
the region-growing algorithm. We attempted to apply
the same segmentation method on the MPRAGE
images but observed discontinuities in the segmented
arteries and leakage to background tissues. MR angi-
ography is now routinely performed in many clinical
and research brain imaging studies and a high reso-
lution 3D MR angiography image of the carotid
region can be easily acquired.

Mismatches in the PET/MR registration can lead to
errors in the measured IDIF curves, as they may cause
inclusion of signal from non-arterial voxels in the meas-
urement. To minimize the errors caused by misregistra-
tion, we developed a two-step registration method and
alignment of carotid arteries was visually inspected for
each dataset. However, it is likely that small mismatch
errors were present in these data since the PET and
MRI images were acquired on separate scanners and
patients may have had different head positioning across
scans, making the registration step more problematic.
Using a simultaneous PET/MRI system is likely to
improve the performance of IDIF extraction, as it
could reduce co-registration errors.

One limitation of this study was the arterial blood
sampling protocol used to obtain the AIF. AIF was
sampled for every 10 s for the first 2min, which
might cause errors in the definition of the AIF peak.

The sampling thereby closely matches the framing ini-
tially. However, the measured AIFs and IDIFs were
fitted with an analytical input function model in the
kinetic analysis, which could reduce the negative effects
caused by the sampling protocol. During the AIF fit-
ting, we took into account the fact that each blood
samples was taken over a 3-s period, while the IDIF
represented an average over each PET frame duration.
The accuracy of the IDIFs would depend on the accur-
acy of segmentation, registration and PSF measure-
ment methods, while the AIF could be affected by
issues related to the blood sampling. These can be pos-
sible explanations for the significantly different K1 and
k3 parameters.

A small time difference between the peaks of the
IDIFPVC and AIFSamples was observed, which can be
caused by different PET tracer arrival times to the car-
otid arteries and the radial artery, tubing used in arter-
ial sampling and variation in blood velocity in different
arteries. This time difference in AIF peaks may also
introduce errors in the estimated kinetic parameter
values. There are several methods present in the litera-
ture to correct arterial samples for these time delay and
dispersion effects,24,25 but in this case, we have chosen
not to modify the gold standard arterial blood sample
curve. Therefore, to make a fair comparison, time delay
and dispersion were applied to the measured IDIFs
instead. It could be argued that due to its proximity
to brain tissues, an IDIF measured from carotid
arteries, corrected for PV effects, might be a more
accurate representation of the input function in brain
kinetic analysis than arterial samples obtained from a
radial artery.

There was a good agreement between IDIFPVC

and AIFSamples in terms of the macro-parameter Ki.
However, the micro-parameters K1 and k3 were signifi-
cantly different. This may suggest that, when using
IDIFPVC, the outcome values should be restricted to
Ki, in which case it would be possible to use a simple
Patlak analysis,2,3 obviating the need for full kinetic
modelling. On the other hand, it is not entirely clear
which set of estimated micro-parameters are closer to
the true values. The K1, k2, k3 and cMRglc values
obtained with our method are well within the range
of previously published values for grey matter tissues
in healthy subjects (K1: 0.068–0.161, k2: 0.071–0.301,
k3: 0.03–0.10, cMRglc: 28.60� 4.73).18

Conclusions

In conclusion, we have described an IDIF estimation
technique, utilizing STC to correct for contamination
from neighbouring tissues. This method only requires
segmentation of the carotid arteries, which was per-
formed using coregistered MR angiography images
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with excellent soft tissue contrast. The proposed method
does not require any arterial or venous blood samples to
be used in PVC and curve scaling. Results were validated
against AIFs determined from serial arterial blood sam-
ples and no significant difference was seen in the area
under input function curves and estimated cMRglc

values. Only two of four microparameters could be
retrieved with no significant differences.
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